-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil_volume_calculation_w_Dave.py
48 lines (29 loc) · 1.42 KB
/
util_volume_calculation_w_Dave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 16 10:25:29 2023
@author: Lei Zhang
"""
import nibabel as nib
import numpy as np
#Input is the nii file name, the output is the quantitative results of the mask (0, as background, non-zeros as mask labels)
#mask_volume is the count of voxels in the volume
#vol_ml is the volume measured in ml
#the volume_norm is calculated from the header of the nii file to normalize the mask volume into ml.
def vol_in_ml(abs_nii_fn):
mask_volume_test =nib.load(abs_nii_fn)
header_gtest = mask_volume_test.header
hdr = header_gtest
print(header_gtest['xyzt_units'], hdr.get_xyzt_units())
x_dim = header_gtest['pixdim'][1]
y_dim = header_gtest['pixdim'][2]
z_dim = header_gtest['pixdim'][3]
#volume_norm is calculate based on https://brainder.org/2012/09/23/the-nifti-file-format/ #
volume_norm = x_dim * y_dim * z_dim
mask_volume =nib.load(abs_nii_fn).get_fdata()
mask_volume = np.sum(mask_volume>0)
print('x_dim, y_dim, z_dim, volume_norm ', x_dim, y_dim, z_dim, volume_norm)
#from mm to ml
vol_ml = mask_volume * volume_norm /1000
return mask_volume, vol_ml, volume_norm
#vols_num, volume_ml, norm_val =vol_in_ml('/media/ubuntu/SATA_WDC/2023_WBC_dataset_tranche/Result_selected_HEMOTHORAX/TraumaBody_15_1_1_CT_HEADBRAIN_WO_CON_DE_BODY_4.0_Br40_3_F_0.7_13.nii.gz')