forked from google-research/selfstudy-adversarial-robustness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
81 lines (65 loc) · 2.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model of the defense 0."""
import numpy as np
import tensorflow as tf
from common.framework import DefenseModel, get_checkpoint_abs_path
from common.networks import AllConvModel, AllConvModelTorch
import common.utils as utils
MODEL_PATH = 'checkpoints/baseline/final_checkpoint-1'
class RandomDropModel(AllConvModel):
def __call__(self, x, training=False):
del training
for layer in self.layers:
x = layer(x)
if isinstance(layer, tf.keras.layers.Conv2D):
_,a,b,c = x.shape
p = tf.abs(x)/tf.reduce_sum(tf.abs(x), axis=(1,2,3), keepdims=True)
p_keep = 1-tf.exp(-a*b*c / 3 * p)
keep = tf.random.uniform(p_keep.shape)<p_keep
x = tf.cast(keep, tf.float32)*x/p_keep
return x
class Defense(DefenseModel):
def __init__(self):
self.convnet = RandomDropModel(num_classes=10,
num_filters=64,
input_shape=[32, 32, 3])
tf.train.Checkpoint(model=self.convnet).restore(
get_checkpoint_abs_path(MODEL_PATH))
self.to_tensor = lambda x: x
def classify(self, x):
preds = [utils.to_numpy(self.convnet(self.to_tensor(x))) for _ in range(10)]
return np.mean(preds, axis=0)
class RandomDropModelTorch(AllConvModelTorch):
def __call__(self, x, training=False):
import torch
del training
for layer in self.layers:
x = layer(x)
if isinstance(layer, torch.nn.Conv2d):
_,a,b,c = x.shape
p = torch.abs(x)/torch.sum(torch.abs(x), axis=(1,2,3), keepdims=True)
p_keep = 1-torch.exp(-a*b*c / 3 * p)
keep = torch.rand(p_keep.shape)<p_keep
x = keep.float()*x/p_keep
return x
class DefenseTorch(Defense):
def __init__(self):
import torch
self.convnet = RandomDropModelTorch(num_classes=10,
num_filters=64,
input_shape=[3, 32, 32])
self.convnet.load_state_dict(
torch.load(get_checkpoint_abs_path(MODEL_PATH) + ".torchmodel"))
self.to_tensor = torch.tensor