forked from twopin/CAMP
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess_features.py
194 lines (152 loc) · 6.46 KB
/
preprocess_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import sys
import pickle
import math
amino_acid_set = { "A": 1, "C": 2, "B": 3, "E": 4, "D": 5, "G": 6,
"F": 7, "I": 8, "H": 9, "K": 10, "M": 11, "L": 12,
"O": 13, "N": 14, "Q": 15, "P": 16, "S": 17, "R": 18,
"U": 19, "T": 20, "W": 21,
"V": 22, "Y": 23, "X": 24,
"Z": 25 } # consider non-standard residues
amino_acid_num = 25
ss_set = {"C": 1, "H": 2, "E": 3}
ss_number = 3
physicochemical_set={'A': 1, 'C': 3, 'B': 7, 'E': 5, 'D': 5, 'G': 2, 'F': 1,
'I': 1, 'H': 6, 'K': 6, 'M': 1, 'L': 1, 'O': 7, 'N': 4,
'Q': 4, 'P': 1, 'S': 4, 'R': 6, 'U': 7, 'T': 4, 'W': 2,
'V': 1, 'Y': 4, 'X': 7, 'Z': 7}
residue_list = list(amino_acid_set.keys())
ss_list = list(ss_set.keys())
new_key_list = []
for i in residue_list:
for j in ss_list:
str_1 = str(i)+str(j)
new_key_list.append(str_1)
new_value_list = [x+1 for x in list(range(amino_acid_num*ss_number))]
seq_ss_set = dict(zip(new_key_list,new_value_list))
seq_ss_number = amino_acid_num*ss_number #75
def label_sequence(line, pad_prot_len, res_ind):
X = np.zeros(pad_prot_len)
for i, res in enumerate(line[:pad_prot_len]):
X[i] = res_ind[res]
return X
def label_seq_ss(line, pad_prot_len, res_ind):
line = line.strip().split(',')
X = np.zeros(pad_prot_len)
for i ,res in enumerate(line[:pad_prot_len]):
X[i] = res_ind[res]
return X
def sigmoid(x):
return 1 / (1 + math.exp(-x))
sigmoid_array=np.vectorize(sigmoid)
def padding_sigmoid_pssm(x,N):
x = sigmoid_array(x)
padding_array = np.zeros([N,x.shape[1]])
if x.shape[0]>=N: # sequence is longer than N
padding_array[:N,:x.shape[1]] = x[:N,:]
else:
padding_array[:x.shape[0],:x.shape[1]] = x
return padding_array
def padding_intrinsic_disorder(x,N):
padding_array = np.zeros([N,x.shape[1]])
if x.shape[0]>=N: # sequence is longer than N
padding_array[:N,:x.shape[1]] = x[:N,:]
else:
padding_array[:x.shape[0],:x.shape[1]] = x
return padding_array
if __name__ == '__main__':
input_file = sys.argv[1]
f = open(input_file)
pep_set = set()
seq_set = set()
pep_ss_set = set()
seq_ss_set = set()
for line in f.readlines()[1:]: # if the file has headers and pay attention to the columns (whether have peptide binding site labels)
seq, pep, label, pep_ss, seq_ss = line.strip().split('\t')
pep_set.add(pep)
seq_set.add(seq)
pep_ss_set.add(pep_ss)
seq_ss_set.add(seq_ss)
f.close()
pep_len = [len(pep) for pep in pep_set]
seq_len = [len(seq) for seq in seq_set]
pep_ss_len = [len(pep_ss) for pep_ss in pep_ss_set]
seq_ss_len = [len(seq_ss) for seq_ss in seq_ss_set]
pep_len.sort()
seq_len.sort()
pep_ss_len.sort()
seq_ss_len.sort()
pad_pep_len = 50
pad_prot_len = seq_len[int(0.8*len(seq_len))-1]
print 'num of peptides', len(pep_len), 'pad_pep_len', pad_pep_len
print 'seq_set', len(seq_len), 'pad_prot_len', pad_prot_len
print 'num of peptide ss', len(pep_ss_len), 'pad_pep_len', pad_pep_len
print 'seq_ss_set', len(seq_ss_len), 'pad_prot_len', pad_prot_len
np.save('./preprocessing/pad_pep_len',pad_pep_len)
np.save('./preprocessing/pad_prot_len',pad_prot_len)
np.save('./preprocessing/pad_pep_len',pad_pep_len)
np.save('./preprocessing/_pad_prot_len',pad_prot_len)
# load raw dense features, the directory dense_feature_dict and proprocessing need to be created first.
with open('./dense_feature_dict/Protein_pssm_dict') as f: # value: (sequence_length, 20) without sigmoid
protein_pssm_dict = pickle.load(f)
with open('./dense_feature_dict/Protein_Intrinsic_dict') as f: # value: (sequence_length, 3): long, short, anchor
protein_intrinsic_dict = pickle.load(f)
with open('./dense_feature_dict/Peptide_Intrinsic_dict_v3') as f: # value: (sequence_length, 3): long, short, anchor
peptide_intrinsic_dict = pickle.load(f)
peptide_feature_dict = {}
protein_feature_dict = {}
peptide_ss_feature_dict = {}
protein_ss_feature_dict = {}
peptide_2_feature_dict = {}
protein_2_feature_dict = {}
peptide_dense_feature_dict = {}
protein_dense_feature_dict = {}
f = open(datafile)
for line in f.readlines()[1:]:
seq, pep, label, pep_ss, seq_ss = line.strip().split('\t')
if pep not in peptide_feature_dict:
feature = label_sequence(pep, pad_pep_len, amino_acid_set)
peptide_feature_dict[pep] = feature
if seq not in protein_feature_dict:
feature = label_sequence(seq, pad_prot_len, amino_acid_set)
protein_feature_dict[seq] = feature
if pep_ss not in peptide_ss_feature_dict:
feature = label_seq_ss(pep_ss, pad_pep_len, seq_ss_set)
peptide_ss_feature_dict[pep_ss] = feature
if seq_ss not in protein_ss_feature_dict:
feature = label_seq_ss(seq_ss, pad_prot_len, seq_ss_set)
protein_ss_feature_dict[seq_ss] = feature
if pep not in peptide_2_feature_dict:
feature = label_sequence(pep, pad_pep_len, physicochemical_set)
peptide_2_feature_dict[pep] = feature
if seq not in protein_2_feature_dict:
feature = label_sequence(seq, pad_prot_len, physicochemical_set)
protein_2_feature_dict[seq] = feature
if pep not in peptide_dense_feature_dict:
feature = padding_intrinsic_disorder(peptide_intrinsic_dict[pep], pad_pep_len)
peptide_dense_feature_dict[pep] = feature
if seq not in protein_dense_feature_dict:
feature_pssm = padding_sigmoid_pssm(protein_pssm_dict[seq], pad_prot_len)
feature_intrinsic = padding_intrinsic_disorder(protein_intrinsic_dict[seq], pad_prot_len)
feature_dense = np.concatenate((feature_pssm, feature_intrinsic), axis=1)
protein_dense_feature_dict[seq] = feature_dense
if seq not in protein_intrinsic_feature_dict:
feature_intrinsic = padding_intrinsic_disorder(protein_intrinsic_dict[seq], pad_prot_len)
protein_intrinsic_feature_dict[seq] = feature_intrinsic
f.close()
with open('./preprocessing/peptide_feature_dict','wb') as f:
pickle.dump(peptide_feature_dict,f)
with open('./preprocessing/protein_feature_dict','wb') as f:
pickle.dump(protein_feature_dict,f)
with open('./preprocessing/peptide_ss_feature_dict','wb') as f:
pickle.dump(peptide_ss_feature_dict,f)
with open('./preprocessing/protein_ss_feature_dict','wb') as f:
pickle.dump(protein_ss_feature_dict,f)
with open('./preprocessing/peptide_2_feature_dict','wb') as f:
pickle.dump(peptide_2_feature_dict,f)
with open('./preprocessing/protein_2_feature_dict','wb') as f:
pickle.dump(protein_2_feature_dict,f)
with open('./preprocessing/peptide_dense_feature_dict','wb') as f:
pickle.dump(peptide_dense_feature_dict,f)
with open('./preprocessing/protein_dense_feature_dict','wb') as f:
pickle.dump(protein_dense_feature_dict,f)