-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
52 lines (39 loc) · 1.62 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from flask import Flask, jsonify, request
from flask_restful import reqparse, abort, Api, Resource
import pickle
"""
curl http://localhost:5000/predict -H application/json --data-binary '{ \
"crime_rate": 0.1, \
"avg_number_of_rooms": 4.0, \
"distance_to_employment_centers": 6.5,\
"property_tax_rate": 330.0, \
"pupil_teacher_ratio": 19.5
}'
"""
app = Flask(__name__)
api = Api(app)
model_filename = 'model/house_prediction.pkl'
with open(model_filename, 'rb') as f:
model = pickle.load(f)
model_filename = 'model/stddev.pkl'
with open(model_filename, 'rb') as f:
stddev = pickle.load(f)
class PredictHouse(Resource):
def post(self):
data = request.get_json(force=True)
expectedArguments = ['crime_rate', 'avg_number_of_rooms', 'distance_to_employment_centers', 'property_tax_rate', 'pupil_teacher_ratio']
keys = list(data.keys())
if set(expectedArguments) == set(keys):
crime_rate = data['crime_rate']
avg_number_of_rooms = data['avg_number_of_rooms']
distance_to_employment_centers = data['distance_to_employment_centers']
property_tax_rate = data['property_tax_rate']
pupil_teacher_ratio = data['pupil_teacher_ratio']
pred = model.predict([[crime_rate, avg_number_of_rooms, distance_to_employment_centers, property_tax_rate,
pupil_teacher_ratio]])
return jsonify(house_value=round(pred.tolist()[0][0], 1), stddev=round(stddev, 1))
else:
return abort(400)
api.add_resource(PredictHouse, '/predict')
if __name__ == '__main__':
app.run(debug=True)