Skip to content

Benchmarking EJML vs Numpy / Pytorch #178

Open
@brr53

Description

@brr53

I've noticed EJML matrix multiplication is more than 20 times slower than Pytorch or Numpy. Below I have some test code to reproduce the situation. Am I doing something wrong and what can I do to achieve Python results in Java? Thank you!

public static void main(String[] args) {
var mat1 = fill(new double[15][32]);
var mat2 = fill(new double[32][25600]);
var mask2dMat = new SimpleMatrix(mat1);
var proto2dMat = new SimpleMatrix(mat2);

var ts = System.currentTimeMillis();
mask2dMat.mult(proto2dMat); // multiply
System.out.println(System.currentTimeMillis() - ts); // 20ms on my PC
}

private static double[][] fill(double[][] fMat) {
for (double[] row : fMat) {
for (int i = 0; i < row.length; i++) {
row[i] = ThreadLocalRandom.current().nextFloat();
}
}
return fMat;
}

VS

mat1 = torch.randn(15, 32)
mat2 = torch.randn(32, 25600)
timestamp = int(time.time() * 1000)
mat1 @ mat2 # multiply
print(int(time.time() * 1000) - timestamp) # 0ms on same PC

Thank you.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions