forked from datamesh-architecture/datamesh-architecture.com
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata-product-canvas.html
400 lines (356 loc) · 20.5 KB
/
data-product-canvas.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
<!DOCTYPE html>
<html lang="en">
<head>
<title>Data Mesh Architecture: Designing Data Products</title>
<meta charset="utf-8">
<meta name="description" content="How to design data products by using data product canvas" />
<meta name="keywords" content="data mesh, data mesh architecture, domain-driven data analytics, data analytics, domain-driven design, domain ownership, data as a product, data product, data product canvas, canvas, federated governance, self-serve data platform, data platform">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:site" content="@innoq" />
<meta name="twitter:title" content="Data Mesh Architecture: Designing Data Products" />
<meta name="twitter:description" content="How to design data products by using data product canvas" />
<meta name="twitter:image" content="https://www.datamesh-architecture.com/images/data-product-canvas-template.png" />
<meta name="twitter:image:alt" content="How to design data products by using data product canvas collaboratively." />
<meta property="og:url" content="https://datamesh-architecture.com" />
<meta property="og:title" content="Data Mesh Architecture: Designing Data Products" />
<meta property="og:description" content="How to design data products by using data product canvas" />
<meta property="og:image" content="https://www.datamesh-architecture.com/images/data-product-canvas-template.png" />
<link rel="preload" as="font" type="font/woff2" href="https://www.innoq.com/assets/MarkPro-Book.woff2?cachebuster=2" crossorigin="">
<link rel="preload" as="font" type="font/woff2" href="https://www.innoq.com/assets/MarkPro-Bold.woff2?cachebuster=2" crossorigin="">
<link rel="preload" as="font" type="font/woff2" href="https://www.innoq.com/assets/MarkPro-Heavy.woff2?cachebuster=2" crossorigin="">
<link rel="stylesheet" href="css/style.css" />
<link rel="stylesheet" href="css/0.9.3_css_bulma.css" />
<link rel="stylesheet" href="css/font-awesome_6.0.0_css_all.css"/>
<link rel="shortcut icon" type="image/x-icon" href="/favicon.ico">
</head>
<body>
<nav class="navbar is-dark" role="navigation" aria-label="dropdown navigation">
<div class="container">
<div class="navbar-brand">
<span class="navbar-burger" data-target="navbarMenuHeroA">
<span></span>
<span></span>
<span></span>
</span>
</div>
<div id="navbarMenuHeroA" class="navbar-menu">
<div class="navbar-end">
<a href="/#why" class="navbar-item">
Why
</a>
<a href="/#what-is-data-mesh" class="navbar-item">
What
</a>
<div class="navbar-item has-dropdown is-hoverable">
<a href="/#how-to-design-a-data-mesh" class="navbar-link is-arrowless">
How
</a>
<div class="navbar-dropdown" id="navbarMenuArchitectureDropdown">
<a href="/#how-to-design-a-data-mesh" class="navbar-item">Data Mesh Architecture</a>
<hr class="navbar-divider">
<a href="/#data-product" class="navbar-item">Data Product</a>
<a href="/#federated-governance" class="navbar-item">Federated Governance</a>
<a href="/#analytical-data" class="navbar-item">Analytical Data</a>
<a href="/#ingesting" class="navbar-item">Ingesting</a>
<a href="/#clean-data" class="navbar-item">Clean Data</a>
<a href="/#analytics" class="navbar-item">Analytics</a>
<a href="/#data-platform" class="navbar-item">Data Platform</a>
<a href="/#enabling-team" class="navbar-item">Enabling Team</a>
</div>
</div>
<a href="/#mesh" class="navbar-item">
Mesh
</a>
<div class="navbar-item has-dropdown is-hoverable">
<div class="navbar-link is-arrowless">
Specifications
</div>
<div class="navbar-dropdown" id="navbarMenuSpecificationsDropdown">
<a href="https://www.dataproduct-specification.com" class="navbar-item">Data Product Specification</a>
<a href="https://www.datacontract-specification.com" class="navbar-item">Data Contract Specification</a>
</div>
</div>
<div class="navbar-item has-dropdown is-hoverable">
<div class="navbar-link is-arrowless">
Open Source
</div>
<div class="navbar-dropdown" id="navbarMenuArchitectureToolsDropdown">
<a href="/data-product-canvas.html" class="navbar-item">Data Product Canvas</a>
<a href="/fitness-test.html" class="navbar-item">Fitness Test</a><a href="https://cli.datacontract.com" class="navbar-item">Data Contract CLI</a>
<a href="/open-source/aws.html" class="navbar-item">AWS Terraform Modules</a>
<a href="/open-source/gcp.html" class="navbar-item">GCP Terraform Modules</a>
</div>
</div>
<div class="navbar-item has-dropdown is-hoverable">
<a href="/#tech-stacks" class="navbar-link is-arrowless">
Tech Stacks
</a>
<div class="navbar-dropdown" id="navbarMenuTechStackDropdown">
<a href="/tech-stacks/google-cloud-bigquery.html" class="navbar-item">
Google Cloud BigQuery
</a>
<a href="/tech-stacks/aws-s3-athena.html" class="navbar-item">
AWS S3 and AWS Athena
</a>
<a href="/tech-stacks/azure-synapse-analytics.html" class="navbar-item">
Azure Synapse Analytics
</a>
<a href="/tech-stacks/dbt-snowflake.html" class="navbar-item">
dbt and Snowflake
</a>
<a href="/tech-stacks/databricks.html" class="navbar-item">
Databricks
</a>
<a href="/tech-stacks/minio-trino.html" class="navbar-item">
MinIO and Trino
</a>
<a href="/tech-stacks/sap.html" class="navbar-item">
SAP
</a>
</div>
</div>
<div class="navbar-item has-dropdown is-hoverable">
<a href="/#domain-teams-journey" class="navbar-link is-arrowless">
Start the Journey
</a>
<div class="navbar-dropdown is-right" id="navbarMenuTransformationDropdown">
<a href="/#domain-teams-journey" class="navbar-item">
Domain Team’s Journey
</a>
<a href="/#data-teams-journey" class="navbar-item">
Data Team’s Journey
</a>
<a href="/literature.html" class="navbar-item">
Scientific Literature
</a>
<a href="/real-world-learnings.html" class="navbar-item">
Real World Learnings
</a>
</div>
</div>
<a href="https://www.datamesh-manager.com" class="navbar-item" style="color: #FF9B66">
Data Mesh Manager
</a>
</div>
</div>
</div>
</nav>
<div class="container">
<section class="section">
<nav class="breadcrumb" aria-label="breadcrumbs">
<ul>
<li><a href="/">Data Mesh Architecture</a></li>
<li><a href="#">Open Source</a></li>
<li class="is-active"><a href="#" aria-current="page">Data Product Canvas</a></li>
</ul>
</nav>
<h1 class="title">Designing Data Products</h1>
<div class="content">
<p>
According <a href="https://www.manning.com/books/data-mesh-in-action">to J. Majchrzak et al.</a>,
a <em>"data product is an autonomous, read-optimized, standardized data unit containing at least one dataset
(Domain Dataset), created for satisfying user needs".</em>
Conceptually, a mesh is a graph, a network, consisting of nodes and connecting edges.
Each node in a data mesh is called <strong>data product</strong>.
Every data product exists within a bounded context and one bounded context might contain several data products.
</p>
<p>
As with every architecture, data architecture also has a sociotechnical perspective. Therefore, we need to
consider people and processes in addition to technology for data management. Furthermore, because
we have consumers for our data, these consumers expect a certain quality. Therefore, our data need to be
accessible, and everyone should know where to find data. Thus, the sociotechnical perspective
pushes us to adopt the product thinking philosophy for data - data products.
</p>
<p>
What could be a data product? Generally, any data representation that has value for its consumers can be a good candidate.
In the following, you will find a list of examples of possible data products:
<ul>
<li>A database table or view
<li>Raw unstructured files: e.g., images or videos uploaded by users of a video portal; however, to be valuable to consumers, they should be provided with metadata
<li>Data stream of data entities from a transaction system
<li>Data stream representing the history of changes to the application: For example, events that relate to changes made within a billing account
<li>Simple files: Data in CSV format, excel files
<li>Partitioned files in optimized (Parquet) format
<li>REST API: Read-optimized data exposed from applications
<li>Master Data Management database
<li>Features for the machine learning models
<li>Visualizations and dashboard
</ul>
Building and maintaining data products is a financial investment and takes up domain team's capacity. Therefore,
the value and costs need to be evaluated upfront.
</p>
<h2 class="title" id="data-product-canvas">Data Product Canvas</h2>
<p>
To establish a structured process of data product design across an organization, we propose to start with a <strong>Data Product Canvas</strong>.
</p>
<p class="image">
<a href="images/data-product-canvas-template.png.webp" class="glightbox">
<img src="images/data-product-canvas-template.png.webp" alt="Data Product Canvas" style="width: 100%">
</a>
</p>
<p>
A <strong>Data Product Canvas</strong> is a visual framework that guides your team through the data product specification.
We suggest to fill out this canvas collaboratively.
In total, the Data Product Canvas consists of ten building blocks:
<ol>
<li> Domain
<li> Data Product Name
<li> Consumer and Use Case
<li> Output Port
<li> Metadata
<li> Input Ports
<li> Data Product Design
<li> Observability
<li> Ubiquitous Language
<li> Classification
</ol>
</p>
<p>
In the following, we describe each of the building blocks that constitute the data product.
The order of the building blocks represents the recommended sequence of the collaborative steps during the workshop.
</p>
<h4>Domain</h4>
<p>
Each data product should be implemented, evolved, and maintained by one domain team only.
Therefore each data product belongs exactly to one domain. The following possible questions are
relevant in this building block:
<ul>
<li>Who is accountable for the data product?</li>
<li>Who specifies its requirements?</li>
<li>Who will answer questions about the data product?</li>
<li>Who fixes it when it breaks?</li>
</ul>
</p>
<h4> Data Product Name</h4>
<p>
Each data product has a unique name to be identified and accessed within an organization.
Typically, the product name should follow the common naming strategy.
</p>
<h4> Consumer and Use Case(s)</h4>
<p>
This building block describes the reason behind the existence of the data product.
Data product design follows the <a href="https://uxplanet.org/product-thinking-101-1d71a0784f60">"Product Thinking"</a> philosophy.
We always start with the consumer needs.
</p>
<p>
To identify the purpose of the data product, we describe analytical use cases and organizational objectives.
Understanding the use cases is essential to specify the data required to implement the use cases.
The consumer of the future data product might be either our own domain team or different domain teams.
</p>
<h4> Output ports </h4>
<p>
The output ports define the format and consumption protocol in which data can be exposed.
For example, the output port can be a database table, file, API, or visualizations.
</p>
<h4> Metadata </h4>
<p>
In addition to the output port specification, the data product should define its metadata.
<ul>
<li> The ownership part describes domain name, product owner, organizational unit, license,
version and probable expiration date of the data product</li>
<li>The data schema part describes attributes, data types, constraints,
and relationships to other elements in the data unit (e.g functional dependencies)</li>
<li>The semantics part provides description about the logical model of the data unit.</li>
<li>The security block describes security rules applied to the data product usage
e.g. public, organization, internal, and PII attributes</li>
</ul>
The discussion about required dataset attributes and their meaning contributes
to the team's understanding of the data itself.
Please use additional space to brainstorm and discuss on some example.
</p>
<h4> Input Ports</h4>
<p>
This building block describes the input data for the future data product.
The input ports are receiving mechanism for data that will constitute the data product.
The input ports define the format and protocol in which data can be read.
We distinguish here between <em>operational</em> source systems and other <em>data products</em>,
which might be either internal or coming from other domains.
</p>
<h4> Data Product Design</h4>
<p>
This is the core building block where we design the internals of the data product. This is the place
to specify everything between the input and output ports. Please, describe everything you need to design a
data product on a conceptual level. For instance, you might describe data ingestion, storage, transport, wrangling,
cleaning, transformations, enrichment, augmentation, analytics, SQL statements, or data platform services.
</p>
<h4> Observability</h4>
<p>
In addition to metadata specification, the data product design implies information for observability.
<ul>
<li>Quality Metrics outlines data quality requirements and metrics such as
accuracy, completeness, integrity, as well as compliance to data governance policies.</li>
<li>Operational Metrics might include interval of change, freshness, usage statistics, availability, number of users, data versioning etc.</li>
<li>SLOs for data product enable the discipline of building trustworthiness in each data product.
We specify here the thresholds for metrics to trigger alarms.
</li>
</ul>
</p>
Please note, this is not an extensive list of metadata and observability points. Make sure that
you define all the information required in your organization in order to establish the data mesh architecture.
</p>
<h4> Ubiquitous Language</h4>
<p>
Describe here a common language that is shared between everyone involved in the project. This is usually a context-specific domain
terminology that is relevant for operational systems and data product.
</p>
<h4> Classification</h4>
<p>
In this block, we specify the nature of the exposed data, meaning, we classify our data product as either,
source-aligned, aggregate, or consumer-aligned.
</p>
<h3>Collaborate Together</h3>
<p>
The proposed canvas is suitable for working collaboratively on data products design. The canvas might be easily
used either plotted on paper or with the common online whiteboards like Miro. Once your organization has
created a collection of data products using the proposed data product canvas, you can start connecting all
data products and produce an actual data mesh.
</p>
<h3>Data Product Canvas Example</h3>
<p>We've created an example for a data product containing <em>error prone device revisions</em> within the IoT devices domain.</p>
<p>
<a href="https://miro.com/miroverse/data-product-canvas/"><img src="images/dataproductcanvas-example.png" alt="Data Product Canvas with an example"></a>
</p>
<h3>Download Template</h3>
<ul>
<li><a href="images/data-product-canvas-template_v1.pdf">Download Template as PDF (DIN A0)</a></li>
<li><a href="https://miro.com/miroverse/data-product-canvas/">Use Miro Template</a></li>
</ul>
<p>
The Data Product Canvas is free to use under the <a href="https://creativecommons.org/licenses/by/4.0/">CC BY 4.0 license</a>.
</p>
<h3>Further Reading</h3>
<ul>
<li><a href="https://uxplanet.org/product-thinking-101-1d71a0784f60">Product Thinking 101</a></li>
<li><a href="https://www.thoughtworks.com/insights/articles/data-mesh-in-practice-product-thinking-and-development">Data Mesh in practice: Product thinking and development</a></li>
<li><a href="https://www.agilelab.it/how-to-identify-data-products-welcome-data-product-flow/">How to identify Data Products? (by Agile Lab)</a></li>
</ul>
</div>
</section>
</div>
<footer class="footer">
<div class="content has-text-centered">
<p>
<a href="https://www.innoq.com">
<img src="/images/supported-by-innoq--petrol-apricot.svg" alt="Supported by INNOQ" class="footer-logo" width="180" />
</a>
</p>
<p>
<a href="https://www.innoq.com/en/topics/data-mesh-workshop?ref=dma-footer">Workshop</a> 
<a href="https://www.socreatory.com/de/trainings/datamesh?ref=dma-footer">Training</a> 
<a href="https://www.innoq.com/en/impressum/">Legal Notice</a> 
<a href="https://www.innoq.com/en/datenschutz/">Privacy</a>
</p>
</div>
</footer>
<script async defer src="https://scripts.simpleanalyticscdn.com/latest.js"></script>
<noscript><img src="https://queue.simpleanalyticscdn.com/noscript.gif" alt="" referrerpolicy="no-referrer-when-downgrade" /></noscript>
<link rel="stylesheet" href="css/glightbox.css" />
<script src="js/glightbox.js"></script>
<script type="text/javascript">
const lightbox = GLightbox({});
</script>
<script src="js/anchor.min.js"></script>
<script>anchors.add();</script>
</body>
</html>