@@ -883,7 +883,7 @@ static int test_mp_prime_rand(void)
883
883
884
884
/* test for size */
885
885
for (ix = 10 ; ix < 128 ; ix ++ ) {
886
- printf ("Testing (not safe-prime): %9d bits \n " , ix );
886
+ printf ("\rTesting (not safe-prime): %9d bits " , ix );
887
887
fflush (stdout );
888
888
DO (mp_prime_rand (& a , 8 , ix , (rand_int () & 1 ) ? 0 : MP_PRIME_2MSB_ON ));
889
889
EXPECT (mp_count_bits (& a ) == ix );
@@ -896,15 +896,264 @@ static int test_mp_prime_rand(void)
896
896
return EXIT_FAILURE ;
897
897
}
898
898
899
+ /* Some small pseudoprimes to test the individual implementations */
900
+
901
+ /* Miller-Rabin base 2 */
902
+ static const uint32_t SPSP_2 [] = {
903
+ 2047 , 3277 , 4033 , 4681 , 8321 , 15841 , 29341 , 42799 ,
904
+ 49141 , 52633 , 65281 , 74665 , 80581 , 85489 , 88357 , 90751
905
+ };
906
+
907
+ /* Miller-Rabin base 3 */
908
+ static const uint32_t SPSP_3 [] = {
909
+ 121 , 703 , 1891 , 3281 , 8401 , 8911 , 10585 , 12403 , 16531 ,
910
+ 18721 , 19345 , 23521 , 31621 , 44287 , 47197 , 55969 , 63139 ,
911
+ 74593 , 79003 , 82513 , 87913 , 88573 , 97567
912
+ };
913
+
914
+ /* SPSP to all bases < 100 */
915
+ static const char * SPSP_2_100_LARGE [4 ] = {
916
+ "3L2x7YRmz7g4q+DwxESBacAClxrNiuspLCf8BUEphtky+5VNHLAb2ZZLLI0bu6cAOtNkUXenakBCCL"
917
+ "Vn7gqOpkcrQ/ptxZdk+4gnI99wFjgcfM512N71ZzbwvLe+5Pzat2k+nHIjE0w/WbQvzk4a2/syAY8S"
918
+ "i1B5XRjXYVAQOLyNWhsFpXeWXUgqiNzv7avfwBA3ZOXt" , /* bases 2 - 100 */
919
+ "JOcSIwxGqGEjeQ2GsdlnFMwhc+xY7EtZo5Kf4BglOuakxTJaP8qrdZyduXaAZUdzyPgQLf7B8vqvVE"
920
+ "VLJwH7dLkLEiw19tfu3naT6DgQWzk+b5WuwWJzsTMdgWWH86M1h/Gjt2J/qABtTTH26C8bS4v/q9Fh"
921
+ "R8jqHNOiufUgHkDQdW9Z+BLlf6OVVh2VwPIOGVc7kFF" , /* bases 2 - 107 */
922
+ "1ZCddPKHO7yeqI5ZeKG5ssTnzJeIDpWElJEZnHwejl4tsyly44JgwdiRmXgsi9FQfYhMzFZMgV6qWZZ"
923
+ "sIJl4RNgpD/PDb3nam++ECkzMBuNIXVpmZzw+Gj5xQmpKK+OX8pFSy2IQiKyKAOfSaivXEb2/dga2J/"
924
+ "Pc2d23lw+eP3WtBbfHc7TAQGgNI/6Xmcpl1G64eXCrJ" , /* bases 2 - 103 */
925
+ "cCax282DurA+2Z54W3VLKSC2mwgpilQpGydCDHvXHNRKbJQRa5NtLLfa3sXvCmUWZ9okP2ZSsPDnw0X"
926
+ "dUQLzaz59vnw0rKbfsoA4nDBjMXR78Q889+KS4HFKfXkzxsiIKYo0kSfwPKYxFUi4Zj185kwwAPTAr2"
927
+ "IjegdWjQLeX1ZQM0HVUUF3WEVhHXcFzF0sMiJU5hl" /* bases 2 - 101 */
928
+ };
929
+
930
+ #ifndef LTM_USE_ONLY_MR
931
+ /* Extra strong Lucas test with Baillie's parameters Q = 1, P = 3 */
932
+ static const uint32_t ESLPSP [] = {
933
+ 989 , 3239 , 5777 , 10877 , 27971 , 29681 , 30739 , 31631 , 39059 , 72389 ,
934
+ 73919 , 75077 , 100127 , 113573 , 125249 , 137549 , 137801 , 153931 , 155819 ,
935
+ 161027 , 162133 , 189419 , 218321 , 231703 , 249331 , 370229 , 429479 , 430127 ,
936
+ 459191 , 473891 , 480689 , 600059 , 621781 , 632249 , 635627
937
+ };
938
+
939
+ /*
940
+ Almost extra strong Lucas test with Baillie's parameters Q = 1, P = 3
941
+ Only those that are not in ESLPSP.
942
+ */
943
+ static const uint32_t AESLPSP [] = {
944
+ 10469 , 154697 , 233659 , 472453 , 629693 , 852389 , 1091093 , 1560437 ,
945
+ 1620673 , 1813601 , 1969109 , 2415739 , 2595329 , 2756837 , 3721549 ,
946
+ 4269341 , 5192309 , 7045433 , 7226669 , 7265561
947
+ };
948
+ #endif
949
+
950
+ /* Some randomly choosen 200 decimal digit large primes (https://primes.utm.edu/lists/small/small2.html) */
951
+ static const char * medium_primes [10 ] = {
952
+ "C8Ckh0vviS3HUPdB1NSrSm+gOodw/f1aQ5+aaH1W6RMB0jVkO6lTaL54O3o7U5BSGUFGxm5gAvisbJamasuLZS8g3ZsJ2JM4Vtn9cQZRfkP6b8V" ,
953
+ "64xDN9FqLBiovZ/9q/EPm0DONpIfn5MbJKHa+IjT0fjAzkg34FpAmad+CwhcpKaiTbZEpErut+DhpVyiQfqBFrgcGnGhhIrMF/XkyY3aVx6E96B" ,
954
+ "8cyuMlENm0vh/eWwgHUpDKqmLyCSsRQZRWvbHpA2jHDZv1EhHkVhceg3OFRZn/aXRBnbdtsc2xO6sWh9KZ5Mo7u9rJgBJMVtDnu094MCExj1YvB" ,
955
+ "BRFZFsYjSz45un8qptnuSqEsy9wV0BzbMpVAB1TrwImENOVIc1cASZNQ/mXG2xtazqgn/juVzFo91XLx9PtIlkcK0L2T6fBNgy8Lc7dSVoKQ+XP" ,
956
+ "Ez/mDl+to2gm69+VdIHI9Q7vaO3DuIdLVT69myM3HYwVBE+G24KffAOUAp3FGrSOU+LtERMiIYIEtxPI7n/DRJtmL2i0+REwGpTMge2d2EpabfB" ,
957
+ "5+Uz1gPFjZJ/nNdEOmOaMouJSGzygo42qz7xOwXn/moSUvBpPjo4twRGbK0+qaeU/RI8yYYxXr3OBP4w+/jgL3mN9GiENDM5LtEKMiQrZ9jIVEb" ,
958
+ "AQ5nD1+G1grv41s/XlK+0YTGyZgr/88PzdQJ8QT9tavisTgyG6k8/80A4HQhnFndskHNAaB2EW5fE7KH3kk7m89s8JnVqkJyGZWSfs1+JlmHLPf" ,
959
+ "3F19vPmM0Ih89KZ04Xmd62QB9F6E2sztT10A7Kcqc44eKvsNHh+JY6Z6gJXkbWg1Iw7xr29QAhEF/o1YAgfutQtpdzHkex06Yd71kPsaZdKXiC5" ,
960
+ "2fIcJ1t/VYCColXGs+ji/txNMEXn2FXdowLzlo7QKqzAWHdAbwtltSO5qpSp3OUiEOGUUi3hbyw3iQRE8nFJaikJ89Wdox6vpPtIsc3QRjexMnv" ,
961
+ "8aOicQ5gIbFCarFUgSgzh40LpuZ0jjK1u48/YT+C0h1dAQ8CIEgZjHZT+5/7cCRGmJlo+XCp7S41MSQ2ZNRSJh2texRYtvAXBAZfR8A8twl316P"
962
+ };
963
+
964
+ const mp_digit prime_tab [] = {
965
+ 0x0002 , 0x0003 , 0x0005 , 0x0007 , 0x000B , 0x000D , 0x0011 , 0x0013 ,
966
+ 0x0017 , 0x001D , 0x001F , 0x0025 , 0x0029 , 0x002B , 0x002F , 0x0035 ,
967
+ 0x003B , 0x003D , 0x0043 , 0x0047 , 0x0049 , 0x004F , 0x0053 , 0x0059 ,
968
+ 0x0061 , 0x0065 , 0x0067 , 0x006B , 0x006D , 0x0071 , 0x007F , 0x0083 ,
969
+ 0x0089 , 0x008B , 0x0095 , 0x0097 , 0x009D , 0x00A3 , 0x00A7 , 0x00AD ,
970
+ 0x00B3 , 0x00B5 , 0x00BF , 0x00C1 , 0x00C5 , 0x00C7 , 0x00D3 , 0x00DF ,
971
+ 0x00E3 , 0x00E5 , 0x00E9 , 0x00EF , 0x00F1 , 0x00FB , 0x0101 , 0x0107 ,
972
+ 0x010D , 0x010F , 0x0115 , 0x0119 , 0x011B , 0x0125 , 0x0133 , 0x0137 ,
973
+
974
+ 0x0139 , 0x013D , 0x014B , 0x0151 , 0x015B , 0x015D , 0x0161 , 0x0167 ,
975
+ 0x016F , 0x0175 , 0x017B , 0x017F , 0x0185 , 0x018D , 0x0191 , 0x0199 ,
976
+ 0x01A3 , 0x01A5 , 0x01AF , 0x01B1 , 0x01B7 , 0x01BB , 0x01C1 , 0x01C9 ,
977
+ 0x01CD , 0x01CF , 0x01D3 , 0x01DF , 0x01E7 , 0x01EB , 0x01F3 , 0x01F7 ,
978
+ 0x01FD , 0x0209 , 0x020B , 0x021D , 0x0223 , 0x022D , 0x0233 , 0x0239 ,
979
+ 0x023B , 0x0241 , 0x024B , 0x0251 , 0x0257 , 0x0259 , 0x025F , 0x0265 ,
980
+ 0x0269 , 0x026B , 0x0277 , 0x0281 , 0x0283 , 0x0287 , 0x028D , 0x0293 ,
981
+ 0x0295 , 0x02A1 , 0x02A5 , 0x02AB , 0x02B3 , 0x02BD , 0x02C5 , 0x02CF ,
982
+
983
+ 0x02D7 , 0x02DD , 0x02E3 , 0x02E7 , 0x02EF , 0x02F5 , 0x02F9 , 0x0301 ,
984
+ 0x0305 , 0x0313 , 0x031D , 0x0329 , 0x032B , 0x0335 , 0x0337 , 0x033B ,
985
+ 0x033D , 0x0347 , 0x0355 , 0x0359 , 0x035B , 0x035F , 0x036D , 0x0371 ,
986
+ 0x0373 , 0x0377 , 0x038B , 0x038F , 0x0397 , 0x03A1 , 0x03A9 , 0x03AD ,
987
+ 0x03B3 , 0x03B9 , 0x03C7 , 0x03CB , 0x03D1 , 0x03D7 , 0x03DF , 0x03E5 ,
988
+ 0x03F1 , 0x03F5 , 0x03FB , 0x03FD , 0x0407 , 0x0409 , 0x040F , 0x0419 ,
989
+ 0x041B , 0x0425 , 0x0427 , 0x042D , 0x043F , 0x0443 , 0x0445 , 0x0449 ,
990
+ 0x044F , 0x0455 , 0x045D , 0x0463 , 0x0469 , 0x047F , 0x0481 , 0x048B ,
991
+
992
+ 0x0493 , 0x049D , 0x04A3 , 0x04A9 , 0x04B1 , 0x04BD , 0x04C1 , 0x04C7 ,
993
+ 0x04CD , 0x04CF , 0x04D5 , 0x04E1 , 0x04EB , 0x04FD , 0x04FF , 0x0503 ,
994
+ 0x0509 , 0x050B , 0x0511 , 0x0515 , 0x0517 , 0x051B , 0x0527 , 0x0529 ,
995
+ 0x052F , 0x0551 , 0x0557 , 0x055D , 0x0565 , 0x0577 , 0x0581 , 0x058F ,
996
+ 0x0593 , 0x0595 , 0x0599 , 0x059F , 0x05A7 , 0x05AB , 0x05AD , 0x05B3 ,
997
+ 0x05BF , 0x05C9 , 0x05CB , 0x05CF , 0x05D1 , 0x05D5 , 0x05DB , 0x05E7 ,
998
+ 0x05F3 , 0x05FB , 0x0607 , 0x060D , 0x0611 , 0x0617 , 0x061F , 0x0623 ,
999
+ 0x062B , 0x062F , 0x063D , 0x0641 , 0x0647 , 0x0649 , 0x064D , 0x0653
1000
+ };
1001
+
1002
+ #define ARR_LENGTH (a ) ((int)(sizeof((a))/sizeof((a)[0])))
1003
+
1004
+ static int test_mp_prime_miller_rabin (void )
1005
+ {
1006
+ mp_int a , b , c ;
1007
+ bool result ;
1008
+ int i ;
1009
+ mp_digit j ;
1010
+ DOR (mp_init_multi (& a , & b , & c , NULL ));
1011
+
1012
+ /* SPSP to base 2 */
1013
+ mp_set (& b , 2u );
1014
+ for (i = 0 ; i < ARR_LENGTH (SPSP_2 ); i ++ ) {
1015
+ result = false;
1016
+ mp_set_u32 (& a , SPSP_2 [i ]);
1017
+ DO (mp_prime_miller_rabin (& a , & b , & result ));
1018
+ EXPECT (result == true);
1019
+ }
1020
+
1021
+ /* Some larger primes to check for false negatives */
1022
+ for (i = 0 ; i < 10 ; i ++ ) {
1023
+ result = false;
1024
+ DO (mp_read_radix (& a , medium_primes [i ], 64 ));
1025
+ DO (mp_prime_miller_rabin (& a , & b , & result ));
1026
+ EXPECT (result == true);
1027
+ }
1028
+ /* Some semi-primes */
1029
+ for (i = 0 ; i < 5 ; i += 2 ) {
1030
+ result = false;
1031
+ DO (mp_read_radix (& a , medium_primes [i ], 64 ));
1032
+ DO (mp_read_radix (& c , medium_primes [i + 1 ], 64 ));
1033
+ DO (mp_mul (& a , & c , & a ));
1034
+ DO (mp_prime_miller_rabin (& a , & b , & result ));
1035
+ EXPECT (result == false);
1036
+ }
1037
+
1038
+ /* SPSP to base 3 */
1039
+ mp_set (& b , 3u );
1040
+ for (i = 0 ; i < ARR_LENGTH (SPSP_3 ); i ++ ) {
1041
+ result = false;
1042
+ mp_set_u32 (& a , SPSP_3 [i ]);
1043
+ DO (mp_prime_miller_rabin (& a , & b , & result ));
1044
+ EXPECT (result == true);
1045
+ }
1046
+
1047
+ /* SPSP to bases 2 -- 100 */
1048
+ mp_set (& b , 2u );
1049
+ for (i = 0 ; i < 4 ; i ++ ) {
1050
+ DO (mp_read_radix (& a , SPSP_2_100_LARGE [i ], 64 ));
1051
+ for (j = 2u ; j <= 100u ; j ++ ) {
1052
+ result = false;
1053
+ mp_set (& b , j );
1054
+ DO (mp_prime_miller_rabin (& a , & b , & result ));
1055
+ EXPECT (result == true);
1056
+ }
1057
+ /* 107 is a prime that works */
1058
+ mp_set (& b , 107u );
1059
+ DO (mp_prime_miller_rabin (& a , & b , & result ));
1060
+ EXPECT (result == false);
1061
+ }
1062
+
1063
+ /* SPSP to bases 2 -- 100, automatic */
1064
+ mp_set (& b , 2u );
1065
+ for (i = 0 ; i < 4 ; i ++ ) {
1066
+ DO (mp_read_radix (& a , SPSP_2_100_LARGE [i ], 64 ));
1067
+ for (j = 2u ; j <= (mp_digit )mp_prime_rabin_miller_trials (mp_count_bits (& a )); j ++ ) {
1068
+ result = false;
1069
+ mp_set (& b , (mp_digit )prime_tab [j ]);
1070
+ DO (mp_prime_miller_rabin (& a , & b , & result ));
1071
+ }
1072
+ /* These numbers are not big enough for the heuristics to work */
1073
+ EXPECT (result == true);
1074
+ }
1075
+
1076
+ mp_clear_multi (& a , & b , & c , NULL );
1077
+ return EXIT_SUCCESS ;
1078
+ LBL_ERR :
1079
+ mp_clear_multi (& a , & b , & c , NULL );
1080
+ return EXIT_FAILURE ;
1081
+ }
1082
+
1083
+ #ifndef LTM_USE_ONLY_MR
1084
+ static int test_mp_prime_extra_strong_lucas (void )
1085
+ {
1086
+ mp_int a , b ;
1087
+ bool result ;
1088
+ int i ;
1089
+
1090
+ DOR (mp_init_multi (& a , & b , NULL ));
1091
+
1092
+ /* Check Extra Strong pseudoprimes */
1093
+ for (i = 0 ; i < ARR_LENGTH (ESLPSP ); i ++ ) {
1094
+ result = false;
1095
+ mp_set_u32 (& a , ESLPSP [i ]);
1096
+ DO (mp_prime_extra_strong_lucas (& a , & result ));
1097
+ EXPECT (result == true);
1098
+ }
1099
+
1100
+ /* Check Almost Extra Strong pseudoprimes (not in ESLPSP) */
1101
+ for (i = 0 ; i < ARR_LENGTH (AESLPSP ); i ++ ) {
1102
+ result = false;
1103
+ mp_set_u32 (& a , AESLPSP [i ]);
1104
+ DO (mp_prime_extra_strong_lucas (& a , & result ));
1105
+ EXPECT (result == false);
1106
+ }
1107
+
1108
+ /* Some larger primes to check for false negatives */
1109
+ for (i = 0 ; i < 10 ; i ++ ) {
1110
+ result = false;
1111
+ DO (mp_read_radix (& a , medium_primes [i ], 64 ));
1112
+ DO (mp_prime_extra_strong_lucas (& a , & result ));
1113
+ EXPECT (result == true);
1114
+ }
1115
+
1116
+ /* Some semi-primes */
1117
+ for (i = 0 ; i < 5 ; i ++ ) {
1118
+ result = false;
1119
+ DO (mp_read_radix (& a , medium_primes [i ], 64 ));
1120
+ DO (mp_read_radix (& a , medium_primes [i + 1 ], 64 ));
1121
+ DO (mp_mul (& a , & b , & a ));
1122
+ DO (mp_prime_extra_strong_lucas (& a , & result ));
1123
+ EXPECT (result == false);
1124
+ }
1125
+
1126
+ mp_clear_multi (& a , & b , NULL );
1127
+ return EXIT_SUCCESS ;
1128
+ LBL_ERR :
1129
+ mp_clear_multi (& a , & b , NULL );
1130
+ return EXIT_FAILURE ;
1131
+ }
1132
+ #endif
1133
+
899
1134
static int test_mp_prime_is_prime (void )
900
1135
{
901
1136
int ix ;
902
1137
mp_err e ;
903
- bool cnt , fu ;
1138
+ bool cnt ;
1139
+ #ifndef LTM_USE_ONLY_MR
1140
+ bool fu ;
1141
+ #endif
904
1142
905
1143
mp_int a , b ;
906
1144
DOR (mp_init_multi (& a , & b , NULL ));
907
1145
1146
+ /* strong Miller-Rabin pseudoprimes to the first 100 primes (gernerated with Arnault's method) */
1147
+ printf ("Testing mp_prime_is_prime() with SPSPs to the first 100 primes\n" );
1148
+ for (ix = 0 ; ix < 4 ; ix ++ ) {
1149
+ DO (mp_read_radix (& a ,SPSP_2_100_LARGE [ix ],64 ));
1150
+ DO (mp_prime_is_prime (& a , mp_prime_rabin_miller_trials (mp_count_bits (& a )), & cnt ));
1151
+ if (cnt ) {
1152
+ printf ("SPSP_2_100_LARGE[%d] is not prime but mp_prime_is_prime says it is.\n" , ix );
1153
+ goto LBL_ERR ;
1154
+ }
1155
+ }
1156
+
908
1157
/* strong Miller-Rabin pseudoprime to the first 200 primes (F. Arnault) */
909
1158
printf ("Testing mp_prime_is_prime() with Arnault's pseudoprime 803...901" );
910
1159
DO (mp_read_radix (& a ,
@@ -948,6 +1197,7 @@ static int test_mp_prime_is_prime(void)
948
1197
DO (mp_prime_is_prime (& b , mp_prime_rabin_miller_trials (mp_count_bits (& b )), & cnt ));
949
1198
/* large problem */
950
1199
EXPECT (cnt );
1200
+ #ifndef LTM_USE_ONLY_MR
951
1201
DO (mp_prime_frobenius_underwood (& b , & fu ));
952
1202
EXPECT (fu );
953
1203
if ((e != MP_OKAY ) || !cnt ) {
@@ -959,13 +1209,14 @@ static int test_mp_prime_is_prime(void)
959
1209
putchar ('\n' );
960
1210
goto LBL_ERR ;
961
1211
}
962
-
1212
+ #endif
963
1213
}
1214
+ #ifndef LTM_USE_ONLY_MR
964
1215
/* Check regarding problem #143 */
965
1216
DO (mp_read_radix (& a ,
966
1217
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A63A3620FFFFFFFFFFFFFFFF" ,
967
1218
16 ));
968
- DO (mp_prime_strong_lucas_selfridge (& a , & cnt ));
1219
+ DO (mp_prime_extra_strong_lucas (& a , & cnt ));
969
1220
/* large problem */
970
1221
EXPECT (cnt );
971
1222
if ((e != MP_OKAY ) || !cnt ) {
@@ -974,6 +1225,47 @@ static int test_mp_prime_is_prime(void)
974
1225
putchar ('\n' );
975
1226
goto LBL_ERR ;
976
1227
}
1228
+ #endif
1229
+ /* Check deterministic tests */
1230
+ #ifdef LTM_USE_ONLY_MR
1231
+ #if ((defined S_MP_PRIME_IS_DIVISIBLE_C ) && (MP_PRIME_TAB_SIZE >= 256 ))
1232
+ /* 2-SPRP 4188889 = 431 * 9719 < 2^22 */
1233
+ DO (mp_read_radix (& a ,"4188889" ,10 ));
1234
+ DO (mp_prime_is_prime (& a , 0 , & cnt ));
1235
+ EXPECT (cnt == false);
1236
+ /* Last prime < 2^22 */
1237
+ DO (mp_read_radix (& a ,"4194301" ,10 ));
1238
+ DO (mp_prime_is_prime (& a , 0 , & cnt ));
1239
+ EXPECT (cnt == true);
1240
+ /* 2,3-SPRP 6787327 = 1303 * 5209 < 2^23 */
1241
+ DO (mp_read_radix (& a ,"6787327" ,10 ));
1242
+ DO (mp_prime_is_prime (& a , 0 , & cnt ));
1243
+ EXPECT (cnt == false);
1244
+ /* Last prime < 2^23 */
1245
+ DO (mp_read_radix (& a ,"8388593" ,10 ));
1246
+ DO (mp_prime_is_prime (& a , 0 , & cnt ));
1247
+ EXPECT (cnt == true);
1248
+
1249
+ /* 2,3,1459-SPRP < 2^32*/
1250
+ DO (mp_read_radix (& a ,"1518290707" ,10 ));
1251
+ DO (mp_prime_is_prime (& a , -1 , & cnt ));
1252
+ EXPECT (cnt == false);
1253
+ #endif
1254
+ /* 2,3,7,61-SPRP < 2^43*/
1255
+ DO (mp_read_radix (& a ,"7038007247701" ,10 ));
1256
+ DO (mp_prime_is_prime (& a , -1 , & cnt ));
1257
+ EXPECT (cnt == false);
1258
+
1259
+ /* 2,325,9375,28178,450775,9780504-SPRP < 2^64
1260
+ which is also a
1261
+ 2,3,325,9375,28178,450775,9780504-SPRP
1262
+ */
1263
+ DO (mp_read_radix (& a ,"18411296009130176041" ,10 ));
1264
+ DO (mp_prime_is_prime (& a , -1 , & cnt ));
1265
+ EXPECT (cnt == false);
1266
+
1267
+ #endif
1268
+
977
1269
978
1270
mp_clear_multi (& a , & b , NULL );
979
1271
return EXIT_SUCCESS ;
@@ -2465,6 +2757,10 @@ static int unit_tests(int argc, char **argv)
2465
2757
T1 (mp_montgomery_reduce , MP_MONTGOMERY_REDUCE ),
2466
2758
T1 (mp_root_n , MP_ROOT_N ),
2467
2759
T1 (mp_or , MP_OR ),
2760
+ #ifndef LTM_USE_ONLY_MR
2761
+ T1 (mp_prime_extra_strong_lucas , MP_PRIME_EXTRA_STRONG_LUCAS ),
2762
+ #endif
2763
+ T1 (mp_prime_miller_rabin , MP_PRIME_MILLER_RABIN ),
2468
2764
T1 (mp_prime_is_prime , MP_PRIME_IS_PRIME ),
2469
2765
T1 (mp_prime_next_prime , MP_PRIME_NEXT_PRIME ),
2470
2766
T1 (mp_prime_rand , MP_PRIME_RAND ),
0 commit comments