-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c332ab9
commit 46c9a33
Showing
6 changed files
with
100 additions
and
54 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from ._collection_stats import (property_regression, | ||
property_difference_regression, | ||
property_ratio_regression) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
from math import ceil | ||
from typing import List, Tuple, Union | ||
|
||
import matplotlib.pyplot as plt | ||
import pandas as pd | ||
from scipy.stats import linregress | ||
|
||
from .._stimulus.properties import VP, ensure_vp, VPOrList | ||
from ..collections._coll_stim_pairs import CollectionStimulusPairs, CollectionStimuli | ||
|
||
|
||
def property_regression(stimuli: CollectionStimuli, | ||
dv: Union[str, VP], | ||
iv: VPOrList, | ||
figsize: Tuple[float, float] = (10, 8)): | ||
|
||
if isinstance(iv, List): | ||
iv_prop = [ensure_vp(p) for p in iv] | ||
else: | ||
iv_prop = [ensure_vp(iv)] | ||
dv = ensure_vp(dv) | ||
|
||
data = stimuli.property_dataframe() | ||
cols = [p.name for p in iv_prop + [dv]] | ||
|
||
return _regression_plots(data[cols], dv=dv, | ||
ivs=iv_prop, figsize=figsize) | ||
|
||
|
||
def property_difference_regression(stim_pairs: CollectionStimulusPairs, | ||
dv: Union[str, VP], | ||
iv: VPOrList, | ||
figsize: Tuple[float, float] = (10, 8)): | ||
|
||
if isinstance(iv, List): | ||
iv_prop = [ensure_vp(p) for p in iv] | ||
else: | ||
iv_prop = [ensure_vp(iv)] | ||
dv = ensure_vp(dv) | ||
|
||
data = stim_pairs.property_differences(iv_prop + [dv]) | ||
return _regression_plots(data, dv=dv, | ||
ivs=iv_prop, figsize=figsize) | ||
|
||
|
||
def property_ratio_regression(stim_pairs: CollectionStimulusPairs, | ||
dv: Union[str, VP], | ||
iv: VPOrList, | ||
figsize: Tuple[float, float] = (10, 8)): | ||
|
||
if isinstance(iv, List): | ||
iv_prop = [ensure_vp(p) for p in iv] | ||
else: | ||
iv_prop = [ensure_vp(iv)] | ||
dv = ensure_vp(dv) | ||
|
||
data = stim_pairs.property_ratios(iv_prop + [dv]) | ||
return _regression_plots(data, dv=dv, | ||
ivs=iv_prop, figsize=figsize) | ||
|
||
|
||
def _regression_plots(data: pd.DataFrame, | ||
dv: VP, | ||
ivs: List[VP], | ||
figsize: Tuple[float, float] = (10, 8)): | ||
|
||
if dv in ivs: | ||
raise ValueError(f"Dependent variable '{dv.name}' is also" | ||
" in list of independent variables.") | ||
if len(ivs) == 1: | ||
n_col = 1 | ||
n_row = 1 | ||
else: | ||
n_col = 2 | ||
n_row = ceil(len(ivs)/2) | ||
|
||
fig, axs = plt.subplots(n_row, n_col, figsize=figsize) | ||
for i, p in enumerate(ivs): | ||
_reg_plot(axs.flat[i], data, dv.name, p.name) | ||
|
||
plt.tight_layout() | ||
return fig | ||
|
||
|
||
def _reg_plot(ax: plt.Axes, df: pd.DataFrame, x: str, y: str): # type: ignore | ||
slope, intercept, r_value, _, _ = linregress(df[x], df[y]) | ||
|
||
ax.scatter(df[x], df[y]) | ||
# Add regression line | ||
reg_line = slope * df[x] + intercept # type: ignore | ||
ax.plot(df[x], reg_line, color='green') | ||
ax.set_title(f"{x}, {y} (r={r_value:.2f})") | ||
return |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters