All steps are executed in a linux environment as defined in Dockerfile
.
-
prepare the data, download original data (use the Makefile)
make download make preprocessing make language-data
-
create character matrix files
> cd code > python get_nexus_from_cognate_classes.py > python get_nexus_from_correspondences.py > python get_phylip_from_cognate_classes.py > python get_phylip_from_correspondences.py
-
create goldstandard trees from Glottolog
> python get_glottolog_trees.py
-
create MrBayes scripts and combined nexus files
> cd code > julia create_mb_scripts.jl
-
run MrBayes scripts (to be run on a server with at least 100 cores)
> cd mrbayes > bash run_mrbayes.sh
-
check convergence of MrBayes runs
> cd .. > julia check_convergence.jl
-
extract posterior tree samples
> Rscript create_posterior_samples.r
-
compute GQD for Bayesian trees
> julia get_qdists_mb.jl
-
extract
$\alpha$ -values for Bayesian analysis> julia evaluate_alpha.jl
-
run maximum likelihood experiment (script includes execution of RAxML-NG, GQD computation and extraction of
$\alpha$ -values)> cd ml/ > python ml_experiment.py