Skip to content

Latest commit

 

History

History
74 lines (52 loc) · 1.34 KB

workflow.md

File metadata and controls

74 lines (52 loc) · 1.34 KB

Workflow

All steps are executed in a linux environment as defined in Dockerfile.

  • prepare the data, download original data (use the Makefile)

    make download
    make preprocessing
    make language-data
    
  • create character matrix files

    > cd code
    > python get_nexus_from_cognate_classes.py
    > python get_nexus_from_correspondences.py  
    > python get_phylip_from_cognate_classes.py  
    > python get_phylip_from_correspondences.py
    
  • create goldstandard trees from Glottolog

    > python get_glottolog_trees.py
    
  • create MrBayes scripts and combined nexus files

    > cd code
    > julia create_mb_scripts.jl
    
  • run MrBayes scripts (to be run on a server with at least 100 cores)

    > cd mrbayes
    > bash run_mrbayes.sh
    
  • check convergence of MrBayes runs

    > cd ..
    > julia check_convergence.jl
    
  • extract posterior tree samples

    > Rscript create_posterior_samples.r
    
  • compute GQD for Bayesian trees

    > julia get_qdists_mb.jl
    
  • extract $\alpha$-values for Bayesian analysis

    > julia evaluate_alpha.jl
    
  • run maximum likelihood experiment (script includes execution of RAxML-NG, GQD computation and extraction of $\alpha$-values)

    > cd ml/
    > python ml_experiment.py