You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[2025-02-13 14:17:04,833] ERROR embedding.py:176 - services.embedding - (builtins.AssertionError) the embedding dimension(1536) is not equal to (1024) in database.
[SQL: SELECT rag_vec.distance AS score, rag_doc.id, rag_doc.src_id, rag_doc.content, rag_doc.type, rag_doc.target_id, rag_doc.parent_id, rag_doc.seq, rag_doc.metadata
FROM rag_vec LEFT OUTER JOIN rag_doc ON rag_vec.doc_id = rag_doc.id LEFT OUTER JOIN rag_src ON rag_doc.src_id = rag_src.id
WHERE rag_vec.embedding MATCH ? AND k=5]
Traceback (most recent call last):
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1815, in _execute_context
context = constructor(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 1474, in _init_compiled
l_param: List[Any] = [
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 1476, in
flattened_processorskey
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/sql/type_api.py", line 2052, in process
fixed_process_param(value, dialect)
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy_vectorstores/databases/sa_types.py", line 23, in process_bind_param
assert len(value) == self._dim, f"the embedding dimension({len(value)}) is not equal to ({self._dim}) in database."
AssertionError: the embedding dimension(1536) is not equal to (1024) in database.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/vrodionov/viewstore/openai/services/embedding.py", line 145, in ask
results = self.vs.search_by_vector(query, top_k=5)
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy_vectorstores/vectorstores/sqlite.py", line 30, in search_by_vector
docs = [x._asdict() for x in con.execute(stmt)]
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1418, in execute
return meth(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/sql/elements.py", line 515, in _execute_on_connection
return connection._execute_clauseelement(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1640, in _execute_clauseelement
ret = self._execute_context(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1821, in _execute_context
self._handle_dbapi_exception(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 2355, in _handle_dbapi_exception
raise sqlalchemy_exception.with_traceback(exc_info[2]) from e
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1815, in _execute_context
context = constructor(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 1474, in _init_compiled
l_param: List[Any] = [
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 1476, in
flattened_processorskey
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/sql/type_api.py", line 2052, in process
fixed_process_param(value, dialect)
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy_vectorstores/databases/sa_types.py", line 23, in process_bind_param
assert len(value) == self._dim, f"the embedding dimension({len(value)}) is not equal to ({self._dim}) in database."
sqlalchemy.exc.StatementError: (builtins.AssertionError) the embedding dimension(1536) is not equal to (1024) in database.
[SQL: SELECT rag_vec.distance AS score, rag_doc.id, rag_doc.src_id, rag_doc.content, rag_doc.type, rag_doc.target_id, rag_doc.parent_id, rag_doc.seq, rag_doc.metadata
FROM rag_vec LEFT OUTER JOIN rag_doc ON rag_vec.doc_id = rag_doc.id LEFT OUTER JOIN rag_src ON rag_doc.src_id = rag_src.id
WHERE rag_vec.embedding MATCH ? AND k=5]
The text was updated successfully, but these errors were encountered:
[2025-02-13 14:17:04,833] ERROR embedding.py:176 - services.embedding - (builtins.AssertionError) the embedding dimension(1536) is not equal to (1024) in database.
[SQL: SELECT rag_vec.distance AS score, rag_doc.id, rag_doc.src_id, rag_doc.content, rag_doc.type, rag_doc.target_id, rag_doc.parent_id, rag_doc.seq, rag_doc.metadata
FROM rag_vec LEFT OUTER JOIN rag_doc ON rag_vec.doc_id = rag_doc.id LEFT OUTER JOIN rag_src ON rag_doc.src_id = rag_src.id
WHERE rag_vec.embedding MATCH ? AND k=5]
Traceback (most recent call last):
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1815, in _execute_context
context = constructor(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 1474, in _init_compiled
l_param: List[Any] = [
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 1476, in
flattened_processorskey
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/sql/type_api.py", line 2052, in process
fixed_process_param(value, dialect)
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy_vectorstores/databases/sa_types.py", line 23, in process_bind_param
assert len(value) == self._dim, f"the embedding dimension({len(value)}) is not equal to ({self._dim}) in database."
AssertionError: the embedding dimension(1536) is not equal to (1024) in database.
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/vrodionov/viewstore/openai/services/embedding.py", line 145, in ask
results = self.vs.search_by_vector(query, top_k=5)
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy_vectorstores/vectorstores/sqlite.py", line 30, in search_by_vector
docs = [x._asdict() for x in con.execute(stmt)]
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1418, in execute
return meth(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/sql/elements.py", line 515, in _execute_on_connection
return connection._execute_clauseelement(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1640, in _execute_clauseelement
ret = self._execute_context(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1821, in _execute_context
self._handle_dbapi_exception(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 2355, in _handle_dbapi_exception
raise sqlalchemy_exception.with_traceback(exc_info[2]) from e
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1815, in _execute_context
context = constructor(
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 1474, in _init_compiled
l_param: List[Any] = [
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 1476, in
flattened_processorskey
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy/sql/type_api.py", line 2052, in process
fixed_process_param(value, dialect)
File "/home/vrodionov/viewstore/openai/venv/lib/python3.10/site-packages/sqlalchemy_vectorstores/databases/sa_types.py", line 23, in process_bind_param
assert len(value) == self._dim, f"the embedding dimension({len(value)}) is not equal to ({self._dim}) in database."
sqlalchemy.exc.StatementError: (builtins.AssertionError) the embedding dimension(1536) is not equal to (1024) in database.
[SQL: SELECT rag_vec.distance AS score, rag_doc.id, rag_doc.src_id, rag_doc.content, rag_doc.type, rag_doc.target_id, rag_doc.parent_id, rag_doc.seq, rag_doc.metadata
FROM rag_vec LEFT OUTER JOIN rag_doc ON rag_vec.doc_id = rag_doc.id LEFT OUTER JOIN rag_src ON rag_doc.src_id = rag_src.id
WHERE rag_vec.embedding MATCH ? AND k=5]
The text was updated successfully, but these errors were encountered: