-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembedding_dnn.py
53 lines (41 loc) · 1.62 KB
/
embedding_dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# coding: utf-8
import pandas as pd
import numpy as np
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import Adam
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
get_ipython().run_cell_magic('time', '', "train_data = pd.read_csv('../data/embedding_train.csv')")
target = ['transportation_issues']
dense_features = list(set(train_data.columns) - set(target))
train, test = train_test_split(train_data, test_size=0.2, random_state=2020)
train_model_input = train[dense_features]
test_model_input = test[dense_features]
model = Sequential([
Dense(1024, input_dim = len(dense_features)),
Activation('relu'),
Dense(256),
Activation('relu'),
Dense(64),
Activation('relu'),
Dense(1),
Activation('sigmoid'),
])
opt = Adam(lr=0.001)
model.compile(optimizer=opt, loss="binary_crossentropy", metrics=['binary_crossentropy'])
model.fit(x=train_model_input, y=train[target], validation_split=0.1, batch_size=64, epochs=10, class_weight={0:1, 1:3})
pred_ans = model.predict(test_model_input, batch_size=64)
print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4))
print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4))
ans = pd.Series(pred_ans.reshape((-1,)))
ans[ans>=0.5] = 1
ans[ans<0.5] = 0
pd.Series(test[target].transportation_issues).value_counts()
ans.value_counts()
print(classification_report(test[target], ans))
model.summary()