Skip to content

Commit 64b884d

Browse files
committed
[HWORKS-1113] Add docs for attaching model evaluation images to a model version
1 parent 0923c44 commit 64b884d

File tree

2 files changed

+76
-0
lines changed

2 files changed

+76
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,75 @@
1+
# How To Save Model Evaluation Images
2+
3+
## Introduction
4+
5+
In this guide, you will learn how to attach ==model evaluation images== to a model. Model evaluation images contain **confusion matrices**, **ROC curves** or other graphs that help visualizing model evaluation metrics. By attaching model evaluation images to your model version, other users can better understand the experiment results obtained during model training.
6+
7+
## Code
8+
9+
### Step 1: Connect to Hopsworks
10+
11+
```python
12+
import hopsworks
13+
14+
project = hopsworks.login()
15+
16+
# get Hopsworks Model Registry handle
17+
mr = project.get_model_registry()
18+
```
19+
20+
### Step 2: Generate model evaluation figures
21+
22+
Generate a figure that visualizes a model metric.
23+
24+
```python
25+
import seaborn
26+
from sklearn.metrics import confusion_matrix
27+
28+
# Predict the training data using the trained model
29+
y_pred_train = model.predict(X_train)
30+
31+
# Predict the test data using the trained model
32+
y_pred_test = model.predict(X_test)
33+
34+
# Calculate and print the confusion matrix for the test predictions
35+
results = confusion_matrix(y_test, y_pred_test)
36+
37+
# Create a DataFrame for the confusion matrix results
38+
df_confusion_matrix = pd.DataFrame(
39+
results,
40+
['True Normal', 'True Fraud'],
41+
['Pred Normal', 'Pred Fraud'],
42+
)
43+
44+
# Create a heatmap using seaborn with annotations
45+
heatmap = seaborn.heatmap(df_confusion_matrix, annot=True)
46+
47+
# Get the figure and display it
48+
fig = heatmap.get_figure()
49+
fig.show()
50+
```
51+
52+
### Step 3: Save the figures as images inside the model directory
53+
54+
Save the figure to an image file, and place it in a directory with name ´images´ inside the model directory to be exported.
55+
56+
```python
57+
# Specify the directory name for saving the model and related artifacts
58+
model_dir = "./model"
59+
60+
# Create a directory with name 'images' for saving the model evaluation images
61+
model_images_dir = model_dir + "/images"
62+
if not os.path.exists(model_images_dir):
63+
os.mkdir(model_images_dir)
64+
65+
# Save the figure to an image file in the images directory
66+
fig.savefig(model_images_dir + "/confusion_matrix.png")
67+
68+
# Register the model
69+
py_model = mr.python.create_model(name="py_model")
70+
py_model.save("./model")
71+
```
72+
73+
## Conclusion
74+
75+
In this guide you learned how to attach model evaluation images to a model, helping better understand the experiment results obtained during model training.

mkdocs.yml

+1
Original file line numberDiff line numberDiff line change
@@ -183,6 +183,7 @@ nav:
183183
- Python: user_guides/mlops/registry/frameworks/python.md
184184
- Model Schema: user_guides/mlops/registry/model_schema.md
185185
- Input Example: user_guides/mlops/registry/input_example.md
186+
- Model Evaluation Images: user_guides/mlops/registry/model_evaluation_images.md
186187
- Model Serving:
187188
- user_guides/mlops/serving/index.md
188189
- Deployment:

0 commit comments

Comments
 (0)