-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
197 lines (177 loc) · 7.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import numpy as np
from pathlib import Path
import sys
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import utils
from dcgan import Generator, Discriminator, weights_init
def main():
# define arguments
parser = argparse.ArgumentParser(description='PyTorch GAN')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--cpu', action='store_true', default=False,
help='enables cpu training (no gpu)')
parser.add_argument('--data_path', type=str, default='',
help='data path, if not given, MNISt will be downloaded')
parser.add_argument('--epoch_num', type=int, default=5,
help='number of epochs')
parser.add_argument('--img_chan', type=int, default=1, help='image channel')
parser.add_argument('--img_dim', type=int, default=64,
help='image dimension')
parser.add_argument('--lr', type=float, default=0.0002,
help='learning rate')
parser.add_argument('--project_name', type=str, default='mnist',
help='project name, used to create output folder')
parser.add_argument('--project_path', type=str, default=None,
help='project path')
args = parser.parse_args()
# number of images in one batch, adjust this value according to your GPU memory
batch_size = args.batch_size
# True for GPU training, False for CPU training
if args.cpu is False and torch.cuda.is_available():
cuda = True
else:
cuda = False
# path to input data
data_path = args.data_path
# number if epochs for training (increase value for better results)
epoch_num = args.epoch_num
# number of channels, 1 for grayscale, 3 for rgb image
image_channel = args.img_chan
# image dimension
image_dim = args.img_dim
# learning rate (increase value for better results)
lr = args.lr
# project name
project_name = args.project_name
# path to project
if args.project_path is None:
project_path = Path.cwd()
else:
project_path = Path(args.project_path)
# ==========================================================================
# noise dimension
z_dim = 100
# number of generator filters
g_hidden = image_dim
# number of discriminator filters
d_hidden = g_hidden
# labels for classification (1=real, 0=fake)
real_label = 1
fake_label = 0
# Change to None to get different results at each run
seed = 1
# path to store output files
out_path = project_path.joinpath('output', project_name, 'train')
# create log file and write outputs
log_file = out_path.joinpath('log.txt')
# ==========================================================================
utils.clear_folder(out_path)
print("Logging to {}\n".format(log_file))
sys.stdout = utils.StdOut(log_file)
print("PyTorch version: {}".format(torch.__version__))
if cuda:
print("cuda version: {}\n".format(torch.version.cuda))
if seed is None:
seed = np.random.randint(1, 10000)
print("Random Seed: {}\n".format(seed))
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
cudnn.benchmark = True # May train faster but cost more memory
# training parameters
print("Learning rate: {}".format(lr))
print("Batch size: {}".format(batch_size))
print("Epochs: {}\n".format(epoch_num))
# load dataset
try:
dataset = dset.ImageFolder(root=data_path,
transform=transforms.Compose([
transforms.Resize(image_dim),
transforms.CenterCrop(image_dim),
# transforms.RandomHorizontalFlip(),
# transforms.RandomVerticalFlip(),
# transforms.RandomRotation(180),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
]))
except FileNotFoundError:
print("no data available, using MNIST dataset instead")
image_channel = 1
data_path = project_path.joinpath('input/mnist/mnist')
dataset = dset.MNIST(root=data_path, download=True,
transform=transforms.Compose([
transforms.Resize(image_dim),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]))
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
shuffle=True, num_workers=4)
print("Data path: {}".format(data_path))
print("Number of training images: {}".format(len(dataset)))
print("Image dimension: {}".format(image_dim))
print("Image channel: {}".format(image_channel))
print('Output path: {}\n'.format(out_path))
# init GPU or CPU
device = torch.device("cuda:0" if cuda else "cpu")
# Generator
netG = Generator(image_channel, z_dim, g_hidden).to(device)
netG.apply(weights_init)
print(netG)
# Discriminator
netD = Discriminator(image_channel, d_hidden).to(device)
netD.apply(weights_init)
print(netD)
# loss function
criterion = nn.BCELoss()
# criterion = nn.BCEWithLogitsLoss()
viz_noise = torch.randn(batch_size, z_dim, 1, 1, device=device)
# optimizer
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(0.5, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(0.5, 0.999))
for epoch in range(epoch_num):
for i, data in enumerate(dataloader):
x_real = data[0].to(device)
real_label_t = torch.full((x_real.size(0),), real_label, dtype=torch.float32, device=device)
fake_label_t = torch.full((x_real.size(0),), fake_label, dtype=torch.float32, device=device)
# Update D with real data
netD.zero_grad()
y_real = netD(x_real)
loss_D_real = criterion(y_real, real_label_t)
loss_D_real.backward()
# Update D with fake data
z_noise = torch.randn(x_real.size(0), z_dim, 1, 1, device=device)
x_fake = netG(z_noise)
y_fake = netD(x_fake.detach())
loss_D_fake = criterion(y_fake, fake_label_t)
loss_D_fake.backward()
optimizerD.step()
# Update G with fake data
netG.zero_grad()
y_fake_r = netD(x_fake)
loss_G = criterion(y_fake_r, real_label_t)
loss_G.backward()
optimizerG.step()
if i % 100 == 0:
print('Epoch {} [{}/{}] loss_D_real: {:.4f} loss_D_fake: {:.4f} loss_G: {:.4f}'.format(
epoch, i, len(dataloader),
loss_D_real.mean().item(),
loss_D_fake.mean().item(),
loss_G.mean().item()
))
vutils.save_image(x_real, out_path.joinpath('real_samples.png'), normalize=True)
with torch.no_grad():
viz_sample = netG(viz_noise)
vutils.save_image(viz_sample, out_path.joinpath('fake_samples_{}.png'.format(epoch)), normalize=True)
torch.save(netG.state_dict(), out_path.joinpath('netG_{}.pth'.format(epoch)))
torch.save(netD.state_dict(), out_path.joinpath('netD_{}.pth'.format(epoch)))
if __name__ == "__main__":
main()