forked from alessandrofavale/muPlacer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGMA.py
executable file
·1226 lines (1053 loc) · 68.9 KB
/
GMA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os, sys
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(f'{current_dir}/utils')
sys.path.append(f'{current_dir}/strategies')
import argparse
import logging
import re
import sys
import time
import subprocess
import requests
import kubernetes
import numpy as np
import yaml
import importlib
#import SBMP_GMA_Connector
from os import environ
from prometheus_api_client import PrometheusConnect,PrometheusApiClientException
def update_ucpu():
global gma_config, prom_client, metrics
logger.info(f"Update actual cpu utilization")
now = time.time()
services=status['service-info']
# update values
for area in areas:
pod_regex = status['global-regex'][area]['pod']
query_cpu = f'sum by (pod) (rate(container_cpu_usage_seconds_total{{cluster="{cluster[area]}",namespace="{namespace}",pod=~"{pod_regex}",container!="istio-proxy",container!=""}}[{query_period_str}]))'
try:
query_results = prom_client.custom_query(query=query_cpu)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {query_cpu}: {str(e)}")
return
# clean the ucpu values
status['service-metrics']['ucpu'][area]['value'] = np.zeros(M, dtype=float)
status['service-metrics']['ucpu'][area]['last-update'] = now
if query_results:
for result in query_results:
for service_name in services:
service=services[service_name]
if re.search(service['regex'][area]['pod'], result['metric']['pod'], re.IGNORECASE):
if result["value"][1]=="NaN":
value = 0
else:
value = float(result["value"][1])
status['service-metrics']['ucpu'][area]['value'][service['id']] = status['service-metrics']['ucpu'][area]['value'][service['id']]+value
def update_umem():
global gma_config, prom_client, metrics
logger.info(f"Update actual memory utilization")
now = time.time()
services=status['service-info']
# update values
for area in areas:
pod_regex = status['global-regex'][area]['pod']
query_mem = f'sum by (pod) (container_memory_usage_bytes{{cluster="{cluster[area]}", namespace="{namespace}",pod=~"{pod_regex}",container!="istio-proxy",container!=""}})'
try:
query_results = prom_client.custom_query(query=query_mem)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {query_mem}: {str(e)}")
return
status['service-metrics']['umem'][area]['value'] = np.zeros(M, dtype=float)
status['service-metrics']['umem'][area]['last-update'] = now
if query_results:
for result in query_results:
for service_name in services:
service=services[service_name]
if re.search(service['regex'][area]['pod'], result['metric']['pod'], re.IGNORECASE):
if result["value"][1]=="NaN":
value = 0
else:
value = float(result["value"][1])
status['service-metrics']['umem'][area]['value'][service['id']] = status['service-metrics']['umem'][area]['value'][service['id']] + value
def update_ingress_lambda():
global gma_config, prom_client, status, M
logger.info(f"Update request rate values")
now = time.time()
# update lambda values
destination_app_regex = "|".join(status['service-info'].keys())
query_lambda = f'sum by (source_app) (rate(istio_requests_total{{cluster="{cluster['edge-area']}", namespace="{edge_istio_ingress_namespace}", source_app="{edge_istio_ingress_app}", destination_app=~"{destination_app_regex}", reporter="source", response_code="200", instance=~"{edge_pod_cidr_regex}"}}[{query_period_str}]))'
try:
query_result = prom_client.custom_query(query=query_lambda)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {query_lambda}: {str(e)}")
return
#clean ingress lambda values
status['service-metrics']['service-lambda']['value'][M-1] = 0 # M-1 is the index of the istio-ingress in the global lambda vector
status['service-metrics']['service-lambda']['last-update'] = now
lambda_edge = 0
if query_result:
for result in query_result:
if result["value"][1]=="NaN":
lambda_edge = 0
else:
lambda_edge = float(result["value"][1])
if status['service-metrics']['service-lambda']['value'][M-1] != 0:
logger.critical(f"Multiple results for the lambda query {query_lambda} and service {edge_istio_ingress_app}")
exit(1)
status['service-metrics']['service-lambda']['value'][M-1] = lambda_edge # M-1 is the index of the istio-ingress in the global lambda vector
break
# update resource scaling used for multi edge environment
query_lambda_tot = f'sum by (source_app) (rate(istio_requests_total{{namespace="{edge_istio_ingress_namespace}", source_app="{edge_istio_ingress_app}", destination_app=~"{destination_app_regex}", reporter="source", response_code="200"}}[{query_period_str}]))'
try:
query_result = prom_client.custom_query(query=query_lambda_tot)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {query_lambda_tot}: {str(e)}")
return
#clean ingress lambda values
if query_result:
if len(query_result) > 1:
logger.critical(f"Multiple results for the lambda tot query {query_lambda_tot} and service {edge_istio_ingress_app}")
exit(1)
for result in query_result:
if result["value"][1]=="NaN":
lambda_tot = 0
else:
lambda_tot = float(result["value"][1])
if lambda_tot > 0:
me_resource_scaling = lambda_edge / lambda_tot
status['service-metrics']['me-resource-scaling']['value'] = np.ones(M,dtype=float)*me_resource_scaling
break
return
def update_response_length():
global gma_config, prom_client, metrics
logger.info(f"Update response size values")
now = time.time()
if status['service-metrics']['service-lambda']['value'][M-1] == 0:
logger.info(f"Lambda value for the istio-ingress is 0, skipping Rs update")
return
# update Rs values
destination_app_regex = "|".join(status['service-info'].keys())
cluster_regex = cluster['cloud-area']+"|"+cluster['edge-area']
query_Rs = f'sum by (destination_app) (increase(istio_response_bytes_sum{{cluster=~"{cluster_regex}",namespace="{namespace}", response_code="200", destination_app=~"{destination_app_regex}", reporter="destination"}}[{query_period_str}]))/sum by (destination_app) (increase(istio_response_bytes_count{{cluster=~"{cluster_regex}",namespace="{namespace}", response_code="200", destination_app=~"{destination_app_regex}", reporter="destination"}}[{query_period_str}]))'
try:
r1 = prom_client.custom_query(query=query_Rs)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {query_Rs}: {str(e)}")
return
# clean Rs values
status['service-metrics']['response-length']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['response-length']['last-update'] = now
if r1:
for result in r1:
service_name = result["metric"]["destination_app"]
if service_name in status['service-info']:
service=status['service-info'][service_name]
if result["value"][1]=="NaN":
value = 0
else:
value = float(result["value"][1])
if status['service-metrics']['response-length']['value'][service['id']] != 0:
logger.critical(f"Multiple results for the Rs query {query_Rs} and service {service_name}")
exit(1)
status['service-metrics']['response-length']['value'][service['id']] = value
status['service-metrics']['response-length']['last-update'] = now
return
def update_Fm_and_lambda():
global gma_config, prom_client, metrics
logger.info(f"Update call frequency matrix")
now = time.time()
if status['service-metrics']['service-lambda']['value'][M-1] == 0:
logger.info(f"Lambda value for the istio-ingress is 0, skipping Fm and lambda update")
return
# update lambda and Fm values
destination_app_regex = "|".join(status['service-info'].keys())
cluster_regex = cluster['cloud-area']+"|"+cluster['edge-area']
source_app_regex = edge_istio_ingress_app+"|"+destination_app_regex
fm_query_num=f'sum by (source_app,destination_app) (rate(istio_requests_total{{cluster=~"{cluster_regex}",namespace="{namespace}",source_app=~"{source_app_regex}",destination_app=~"{destination_app_regex}",reporter="destination",response_code="200"}}[{query_period_str}])) '
lambda_query=f'sum by (destination_app) (rate(istio_requests_total{{cluster=~"{cluster_regex}",namespace="{namespace}",source_app=~"{source_app_regex}",destination_app=~"{destination_app_regex}",reporter="destination",response_code="200"}}[{query_period_str}])) '
try:
r = prom_client.custom_query(query=lambda_query)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {lambda_query}: {str(e)}")
return
try:
r2 = prom_client.custom_query(query=fm_query_num)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {fm_query_num}: {str(e)}")
return
# clean lambda and Fm values
status['service-metrics']['fm']['value'] = np.zeros((M,M),dtype=float)
status['service-metrics']['fm']['last-update'] = now
status['service-metrics']['service-lambda']['value'][:M-1] = 0 # M-1 is the index of the istio-ingress in the global lambda vector and this function does not update the lambda of the istio-ingress due to the reporter="destination" filter. update_ingress_lambda() function is responsible for that.
status['service-metrics']['service-lambda']['last-update'] = now
for result in r:
destination_service_name = result["metric"]["destination_app"]
if destination_service_name in status['service-info']:
destination_service = status['service-info'][destination_service_name]
if result["value"][1]=="NaN":
value = 0
else:
value = float(result["value"][1])
if status['service-metrics']['service-lambda']['value'][destination_service['id']] != 0:
logger.critical(f"Multiple results for the lambda query {lambda_query} and service {destination_service_name}")
exit(1)
status['service-metrics']['service-lambda']['value'][destination_service['id']] = value
status['service-metrics']['service-lambda']['last-update'] = now
continue
for result in r2:
source_service_name = result["metric"]["source_app"]
destination_service_name = result["metric"]["destination_app"]
if source_service_name in status['service-info'] and destination_service_name in status['service-info']:
destination_service = status['service-info'][destination_service_name]
source_service = status['service-info'][source_service_name]
if status['service-metrics']['service-lambda']['value'][source_service['id']] == 0:
value = 0
else:
if result["value"][1]=="NaN":
value = 0
else:
value = float(result["value"][1])/status['service-metrics']['service-lambda']['value'][source_service['id']]
if status['service-metrics']['fm']['value'][source_service['id']][destination_service['id']]!=0:
logger.critical(f"Multiple results for the Fm query {fm_query_num} and source service {source_service_name}, destination service {destination_service_name}")
exit(1)
status['service-metrics']['fm']['value'][source_service['id']][destination_service['id']] = value
status['service-metrics']['fm']['last-update'] = now
continue
if source_service_name == edge_istio_ingress_app and destination_service_name in status['service-info']:
if status['service-metrics']['service-lambda']['value'][M-1] == 0: # M-1 is the index of the istio-ingress in the global lambda vector
value = 0
else:
if result["value"][1]=="NaN":
value = 0
else:
value = float(result["value"][1])/status['service-metrics']['service-lambda']['value'][M-1]
if status['service-metrics']['fm']['value'][M-1][status['service-info'][destination_service_name]['id']] != 0:
logger.critical(f"Multiple results for the Fm query {fm_query_num} and source service {source_service_name}, destination service {destination_service_name}")
exit(1)
status['service-metrics']['fm']['value'][M-1][status['service-info'][destination_service_name]['id']] = value
status['service-metrics']['fm']['last-update'] = now
return
# Function that get the average delay from the istio-ingress gateway
def update_ingress_delay():
global gma_config, prom_client, metrics
logger.info(f"Update delay values from istio ingress in the edge area")
now = time.time()
# update the delay value
destination_app_regex = "|".join(status['service-info'].keys())
query_avg_delay = f'sum by (source_app) (rate(istio_request_duration_milliseconds_sum{{cluster=~"{cluster['edge-area']}", namespace="{edge_istio_ingress_namespace}", source_app="{edge_istio_ingress_app}", destination_app=~"{destination_app_regex}", reporter="source", response_code="200"}}[{query_period_str}])) / sum by (source_app) (rate(istio_request_duration_milliseconds_count{{cluster=~"{cluster['edge-area']}", namespace="{edge_istio_ingress_namespace}", source_app="{edge_istio_ingress_app}", destination_app=~"{destination_app_regex}", reporter="source", response_code="200"}}[{query_period_str}]))'
try:
result_query = prom_client.custom_query(query=query_avg_delay)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {query_avg_delay}: {str(e)}")
return
# clean the delay value
status['service-metrics']['edge-user-delay']['value'] = 0
status['service-metrics']['edge-user-delay']['last-update'] = now
if result_query:
for result in result_query:
if result["value"][1]=="NaN":
value=0
else:
value=float(result["value"][1])
if status['service-metrics']['edge-user-delay']['value'] != 0:
logger.critical(f"Multiple results for the delay query {query_avg_delay} and service {edge_istio_ingress_app}")
exit(1)
status['service-metrics']['edge-user-delay']['value'] = value
status['service-metrics']['edge-user-delay']['last-update'] = now
def update_ingress_delay_quantile():
global gma_config, prom_client, metrics
logger.info(f"Update delay quantile values from istio ingress in the edge area")
now = time.time()
# update the delay quantile value
destination_app_regex = "|".join(status['service-info'].keys())
# weigthed average of the delay quantiles from istio-ingress to contacted microservices
query_quantile_delay = f'sum(histogram_quantile({delay_quantile}, sum by (destination_app,le) (rate(istio_request_duration_milliseconds_bucket{{cluster=~"{cluster['edge-area']}", namespace="{edge_istio_ingress_namespace}", source_app="{edge_istio_ingress_app}", destination_app=~"{destination_app_regex}", reporter="source", response_code="200"}}[{query_period_str}])))*(sum by (destination_app) (rate(istio_request_duration_milliseconds_bucket{{cluster=~"{cluster['edge-area']}", namespace="{edge_istio_ingress_namespace}", source_app="{edge_istio_ingress_app}", destination_app=~"{destination_app_regex}", reporter="source", response_code="200",le="+Inf"}}[{query_period_str}])))) / scalar(sum(rate(istio_request_duration_milliseconds_bucket{{cluster=~"{cluster['edge-area']}", namespace="{edge_istio_ingress_namespace}", source_app="{edge_istio_ingress_app}", destination_app=~"{destination_app_regex}", reporter="source", response_code="200",le="+Inf"}}[{query_period_str}])))'
try:
result_query = prom_client.custom_query(query=query_quantile_delay)
except PrometheusApiClientException as e:
logger.error(f"Prometheus query exception for query {query_quantile_delay}: {str(e)}")
return
# clean the delay value
status['service-metrics']['edge-user-delay-quantile']['value'] = 0
status['service-metrics']['edge-user-delay-quantile']['last-update'] = now
if result_query:
for result in result_query:
if result["value"][1]=="NaN":
value=0
else:
value=float(result["value"][1])
if status['service-metrics']['edge-user-delay-quantile']['value'] != 0:
logger.critical(f"Multiple results for the delay quantile query {query_quantile_delay}")
exit(1)
status['service-metrics']['edge-user-delay-quantile']['value'] = value
# Function that updates the HPA values
def update_and_check_HPA():
global gma_config, prom_client, status, k8s_apiclient
logger.info(f"Update HPA values")
now = time.time()
hpa_running = False
# update the hpa values
for area in areas:
with k8s_apiclient[area] as api_client:
# Create an instance of the API class
api_instance = kubernetes.client.AutoscalingV1Api(api_client)
try:
api_response = api_instance.list_namespaced_horizontal_pod_autoscaler(namespace,pretty='True',)
except Exception as e:
print("Exception when calling AutoscalingV1Api->list_namespaced_horizontal_pod_autoscaler: %s\n" % e)
return
# clean values
status['service-metrics']['hpa'][area]['current-replicas'] = np.zeros(M, dtype=int)
status['service-metrics']['hpa'][area]['desired-replicas'] = np.zeros(M, dtype=int)
status['service-metrics']['hpa'][area]['last-update'] = now
# no check for the istio-ingress
status['service-metrics']['hpa']['edge-area']['current-replicas'][M-1] = 1 # the istio-ingress is always running on the edge area and the number of replicas do not matter but must be set to 1 as current-replicas is used to compute the current position of microservices
status['service-metrics']['hpa']['edge-area']['desired-replicas'][M-1] = 1
for hpa in api_response.items:
if re.search(status['global-regex'][area]['hpa'], hpa.metadata.name, re.IGNORECASE):
for service_name in status['service-info']:
service=status['service-info'][service_name]
if re.search(service['regex'][area]['hpa'], hpa.metadata.name, re.IGNORECASE):
status['service-metrics']['hpa'][area]['current-replicas'][service['id']] = int(hpa.status.current_replicas)
status['service-metrics']['hpa'][area]['desired-replicas'][service['id']] = int(hpa.status.desired_replicas)
status['service-metrics']['hpa'][area]['last-update'] = now
run_cond1 = hpa.status.desired_replicas!=hpa.status.current_replicas and hpa.status.desired_replicas<=status['service-metrics']['hpa'][area]['max-replicas'][service['id']] and hpa.status.desired_replicas>=status['service-metrics']['hpa'][area]['min-replicas'][service['id']]
run_cond2 = status['service-metrics']['hpa'][area]['old-current-replicas'][service['id']]!=hpa.status.current_replicas and status['service-metrics']['hpa'][area]['old-current-replicas'][service['id']]>0
if run_cond1 or run_cond2:
hpa_running = hpa_running or True
logging.info(f"HPA {hpa.metadata.name} for service {service_name} in {area} area is possibly running")
status['service-metrics']['hpa'][area]['old-current-replicas'][service['id']] = hpa.status.current_replicas
break
return hpa_running
# Function that updates all metrics
def update_full_metrics():
update_ucpu()
update_umem()
update_ingress_lambda()
update_response_length()
update_Fm_and_lambda()
update_ingress_delay()
update_ingress_delay_quantile()
update_net_metrics()
return
def apply_configuration(result_list):
global gma_config, status, service_id_to_name, gma_config
result_cloud_area = result_list[0] # result_list[0] contains cloud-area information
result_edge_area = result_list[1] # result_list[1] contains edge-area information
# remove resources from edge area
for service_id in result_edge_area['to-delete']:
if service_id not in service_id_to_name:
continue
name = service_id_to_name[service_id]
service=status['service-info'][name]
# move back replicas to cloud area
workload_name = service['regex']['cloud-area']['workload']['regex']
workload_type = service['regex']['cloud-area']['workload']['type']
if workload_type != 'daemonset':
cloud_replicas_increase = np.ceil(status['service-metrics']['hpa']['edge-area']['current-replicas'][service_id]/status['service-metrics']['me-resource-scaling']['value'][service_id]) #-status['service-metrics']['hpa']['cloud-area']['current-replicas'][service_id])
cloud_replicas = status['service-metrics']['hpa']['cloud-area']['current-replicas'][service_id]+cloud_replicas_increase
cloud_replicas = min(status['service-metrics']['hpa']['cloud-area']['max-replicas'][service_id],cloud_replicas)
cloud_replicas = max(status['service-metrics']['hpa']['cloud-area']['min-replicas'][service_id],cloud_replicas)
command = f'kubectl --context {gma_config['spec']['cloud-area']['context']} -n {namespace} scale {workload_type} {workload_name} --replicas {int(cloud_replicas)}'
try:
result = subprocess.run(command, shell=True, check=True, text=True, stdout=subprocess.PIPE)
output = result.stdout
except subprocess.CalledProcessError as e:
output = e.output
# Handle the exception or log the error message
logger.info(f"Scale {workload_type} {workload_name} in cloud-area to {cloud_replicas} replicas: {output}")
# delete resources in edge area
for files in service['instances']['edge-yamls']:
command = f'kubectl --context {gma_config['spec']['edge-area']['context']} -n {namespace} delete -f {files}'
try:
result = subprocess.run(command, shell=True, check=True, text=True, stdout=subprocess.PIPE)
output = result.stdout
except subprocess.CalledProcessError as e:
output = e.output
# Handle the exception or log the error message
logger.info(f"Delete resource for service {name} in edge-area: {output}")
# apply resources in edge area
for service_id in result_edge_area['to-apply']:
if service_id not in service_id_to_name:
continue
name = service_id_to_name[service_id]
service=status['service-info'][name]
for files in service['instances']['edge-yamls']:
command = f'kubectl --context {gma_config['spec']['edge-area']['context']} -n {namespace} apply -f {files}'
try:
result = subprocess.run(command, shell=True, check=True, text=True, stdout=subprocess.PIPE)
output = result.stdout
except subprocess.CalledProcessError as e:
output = e.output
# Handle the exception or log the error message
logger.info(f"Apply resource in edge-area: {output}")
# clone replicas from cloud to edge area
workload_name = service['regex']['edge-area']['workload']['regex']
workload_type = service['regex']['edge-area']['workload']['type']
if workload_type != 'daemonset':
edge_replicas = np.ceil(status['service-metrics']['me-resource-scaling']['value'][service_id] * status['service-metrics']['hpa']['cloud-area']['current-replicas'][service_id])
edge_replicas = min(status['service-metrics']['hpa']['edge-area']['max-replicas'][service_id],edge_replicas)
edge_replicas = max(status['service-metrics']['hpa']['edge-area']['min-replicas'][service_id],edge_replicas)
command = f'kubectl --context {gma_config['spec']['edge-area']['context']} -n {namespace} scale {workload_type} {workload_name} --replicas {int(edge_replicas)}'
try:
result = subprocess.run(command, shell=True, check=True, text=True, stdout=subprocess.PIPE)
output = result.stdout
except subprocess.CalledProcessError as e:
output = e.output
# Handle the exception or log the error message
logger.info(f"Scale deployment {service['regex']['edge-area']['workload']['regex']} in edge-area to {edge_replicas} replicas: {output}")
def update_net_metrics():
logger.info(f"Update net metrics")
netinfo_file = gma_config['spec']['network']['netinfo-file']
net_prober_url = gma_config['spec']['network']['net-prober-url']
if netinfo_file == '':
logger.info(f"Netinfo file not properly configured in the configuration file, no net metric update performed")
return
with open(netinfo_file) as f:
complete_yaml = yaml.load_all(f,Loader=yaml.FullLoader)
for partial_yaml in complete_yaml:
if partial_yaml['kind'] == 'NetInfo':
netinfo = partial_yaml
break
# update netinfo file with the net probing results
if net_prober_url != '':
logger.info(f"Net probing through {net_prober_url} ")
try:
response = requests.get(net_prober_url,timeout=10)
netinfop = response.json()
netinfo['spec']['edge-cloud-rtt'] = f'{int(netinfop['edge-cloud-rtt'])}ms'
netinfo['spec']['cloud-edge-bps'] = f'{int(netinfop['cloud-edge-bps']/1e6)}Mbps'
netinfo['spec']['edge-cloud-bps'] = f'{int(netinfop['edge-cloud-bps']/1e6)}Mbps'
# write the netinfo to the file netinfo_file
with open(netinfo_file, 'w') as f:
yaml.dump(netinfo, f)
except Exception as e:
logger.error(f"Net probing failed: {str(e)}")
if 'spec' in netinfo:
if 'edge-cloud-rtt' in netinfo['spec']:
status['service-metrics']['network']['edge-cloud-rtt-ms']['value'] = time_to_ms_converter(netinfo['spec']['edge-cloud-rtt'])
status['service-metrics']['network']['edge-cloud-rtt-ms']['last-update'] = time.time()
if 'cloud-edge-bps' in netinfo['spec']:
status['service-metrics']['network']['cloud-edge-bps']['value'] = bitrate_to_bps_converter(netinfo['spec']['cloud-edge-bps'])
status['service-metrics']['network']['cloud-edge-bps']['last-update'] = time.time()
if 'edge-cloud-bps' in netinfo['spec']:
status['service-metrics']['network']['edge-cloud-bps']['value'] = bitrate_to_bps_converter(netinfo['spec']['edge-cloud-bps'])
status['service-metrics']['network']['edge-cloud-bps']['last-update'] = time.time()
return
def parse_yaml():
global gma_config, status
logger.info(f"Parse yaml files")
# compute the pod/deployment regex for each service
for area in areas:
for sc in gma_config['spec']['app']['services']:
# compute the pod regex for the edge area
if area == 'edge-area':
items = sc['instances']['edge-yamls']
else:
items = sc['instances']['cloud-yamls']
s = status['service-info'][sc['name']]
for item in items:
yaml_to_apply = item
with open(yaml_to_apply) as f:
complete_yaml = yaml.load_all(f,Loader=yaml.FullLoader)
for partial_yaml in complete_yaml:
if partial_yaml['kind'] == 'Deployment' or partial_yaml['kind'] == 'StatefulSet' or partial_yaml['kind'] == 'DaemonSet':
# update pod information
if s['regex'][area]['pod'] == '':
s['regex'][area]['pod'] = f'{partial_yaml['metadata']['name']}-.*'
else:
s['regex'][area]['pod'] = f'{s['regex'][area]['pod']}|{partial_yaml['metadata']['name']}-.*'
if status['global-regex'][area]['pod'] == '':
status['global-regex'][area]['pod'] = f'{partial_yaml['metadata']['name']}-.*'
else:
status['global-regex'][area]['pod'] = f'{status['global-regex'][area]['pod']}|{partial_yaml['metadata']['name']}-.*'
# update workload information
if s['regex'][area]['workload']['regex'] != '':
logger.critical(f"Multiple deployments/statefulset/daemonset for the service {sc['name']} in the cloud-area not supported")
exit(1)
if partial_yaml['kind'] == 'Deployment':
s['regex'][area]['workload']['type'] == 'deployment'
s['regex'][area]['workload']['regex'] = f'{partial_yaml['metadata']['name']}'
if partial_yaml['kind'] == 'StatefulSet':
s['regex'][area]['workload']['type'] == 'statefulset'
s['regex'][area]['workload']['regex'] = f'{partial_yaml['metadata']['name']}'
if partial_yaml['kind'] == 'DaemonSet':
s['regex'][area]['workload']['type'] == 'daemonset'
s['regex'][area]['workload']['regex'] = f'{partial_yaml['metadata']['name']}'
if status['global-regex'][area]['workload'] == '':
status['global-regex'][area]['workload'] = f'{partial_yaml['metadata']['name']}'
else:
status['global-regex'][area]['workload'] = f'{status['global-regex'][area]['workload']}|{partial_yaml['metadata']['name']}'
for container in partial_yaml['spec']['template']['spec']['containers']:
if 'resources' in container and 'requests' in container['resources'] and 'cpu' in container['resources']['requests']:
status['service-metrics']['qcpu'][area]['value'][s['id']] = status['service-metrics']['qcpu'][area]['value'][s['id']] + cpu_to_sec(container['resources']['requests']['cpu'])
if 'resources' in container and 'requests' in container['resources'] and 'memory' in container['resources']['requests']:
status['service-metrics']['qmem'][area]['value'][s['id']] = status['service-metrics']['qmem'][area]['value'][s['id']] + mem_to_byte(container['resources']['requests']['memory'])
# update hpa information
if partial_yaml['kind'] == 'HorizontalPodAutoscaler' :
if s['regex'][area]['hpa'] == '':
s['regex'][area]['hpa'] = f'{partial_yaml['metadata']['name']}'
status['service-metrics']['hpa'][area]['min-replicas'][s['id']] = int(partial_yaml['spec']['minReplicas'])
status['service-metrics']['hpa'][area]['max-replicas'][s['id']] = int(partial_yaml['spec']['maxReplicas'])
try:
status['service-metrics']['hpa'][area]['cpu-threshold'][s['id']] = float(partial_yaml['spec']['metrics'][0]['resource']['target']['averageUtilization'])/100.0
except KeyError:
status['service-metrics']['hpa'][area]['cpu-threshold'][s['id']] = 0.6
logger.warning(f"No HPA cpu-threshold for the service {sc['name']} in the {area} area, using default value 0.6")
else:
logger.critical(f"Multiple HPA for the service {sc['name']} in the {area} not supported")
exit(1)
if status['global-regex'][area]['hpa'] == '':
status['global-regex'][area]['hpa'] = f'{partial_yaml['metadata']['name']}'
else:
status['global-regex'][area]['hpa'] = f'{status['global-regex'][area]['hpa']}|{partial_yaml['metadata']['name']}'
def init():
global gma_config, status, service_id_to_name
logger.info(f"Init control dictionaries")
status = dict() # Global Status dictionary
status['service-info'] = dict() # Services status dictionary
# Initialize the service information dictionary. It does not contain the metrics. The metrics are stored in the service_metrics dictionary
mid = 0 # microservice id
services=status['service-info']
for s in gma_config['spec']['app']['services']:
services[s['name']]=dict()
# Initialize the service id
if gma_config['spec']['app']['explicit-service-id']:
services[s['name']]['id'] = s['id']
if s['id'] > mid:
mid = s['id']+1 # needed for istio-ingress id
else:
services[s['name']]['id'] = mid
mid = mid +1
# Initialize the regex strings
services[s['name']]['regex'] = dict()
services[s['name']]['regex']['edge-area'] = dict()
services[s['name']]['regex']['cloud-area'] = dict()
services[s['name']]['regex']['edge-area']['pod'] = ''
services[s['name']]['regex']['edge-area']['workload'] = dict()
services[s['name']]['regex']['edge-area']['workload']['type'] = 'deployment'
services[s['name']]['regex']['edge-area']['workload']['regex'] = ''
services[s['name']]['regex']['edge-area']['hpa'] = ''
services[s['name']]['regex']['cloud-area']['pod'] = ''
services[s['name']]['regex']['cloud-area']['workload'] = dict()
services[s['name']]['regex']['cloud-area']['workload']['type'] = 'deployment'
services[s['name']]['regex']['cloud-area']['workload']['regex'] = ''
services[s['name']]['regex']['cloud-area']['hpa'] = ''
# Inintialize the yamls list
services[s['name']]['instances'] = dict()
services[s['name']]['instances']['cloud-yamls'] = s['instances']['cloud-yamls']
services[s['name']]['instances']['edge-yamls'] = s['instances']['edge-yamls']
# map service id to name
for service_name in status['service-info']:
service_id_to_name[status['service-info'][service_name]['id']] = service_name
status['global-regex'] = dict() # Global regex dictionary
status['global-regex']['edge-area'] = dict()
status['global-regex']['cloud-area'] = dict()
status['global-regex']['edge-area']['pod'] = ''
status['global-regex']['edge-area']['workload'] = ''
status['global-regex']['edge-area']['hpa'] = ''
status['global-regex']['cloud-area']['pod'] = ''
status['global-regex']['cloud-area']['workload'] = ''
status['global-regex']['cloud-area']['hpa'] = ''
# Initialize service metrics
status['service-metrics'] = dict()
status['service-metrics']['n-services']= mid+1 # number of microservices
M = status['service-metrics']['n-services']
status['service-metrics']['fm'] = dict()
status['service-metrics']['fm']['info'] = 'Call frequency matrix'
status['service-metrics']['fm']['value'] = np.zeros((M,M),dtype=float)
status['service-metrics']['fm']['last-update'] = 0 # last update time
status['service-metrics']['response-length'] = dict()
status['service-metrics']['response-length']['info'] = 'Response size vector in bytes'
status['service-metrics']['response-length']['value'] = np.zeros(M,dtype=float)
status['service-metrics']['response-length']['last-update'] = 0 # last update time
status['service-metrics']['hpa'] = dict()
status['service-metrics']['hpa']['cloud-area'] = dict()
status['service-metrics']['hpa']['cloud-area']['info'] = 'hpa vectors for cloud area'
status['service-metrics']['hpa']['cloud-area']['current-replicas'] = np.zeros(M,dtype=int)
status['service-metrics']['hpa']['cloud-area']['desired-replicas'] = np.zeros(M,dtype=int)
status['service-metrics']['hpa']['cloud-area']['old-current-replicas'] = np.zeros(M, dtype=int)
status['service-metrics']['hpa']['cloud-area']['min-replicas'] = np.zeros(M,dtype=int)
status['service-metrics']['hpa']['cloud-area']['max-replicas'] = np.zeros(M,dtype=int)
status['service-metrics']['hpa']['cloud-area']['cpu-threshold'] = np.ones(M,dtype=int)*0.6
status['service-metrics']['hpa']['cloud-area']['last-update'] = 0 # last update time
status['service-metrics']['hpa']['edge-area'] = dict()
status['service-metrics']['hpa']['edge-area']['info'] = 'Replicas vector for edge area'
status['service-metrics']['hpa']['edge-area']['current-replicas'] = np.zeros(M,dtype=int)
status['service-metrics']['hpa']['edge-area']['desired-replicas'] = np.zeros(M,dtype=int)
status['service-metrics']['hpa']['edge-area']['old-current-replicas'] = np.zeros(M, dtype=int)
status['service-metrics']['hpa']['edge-area']['min-replicas'] = np.zeros(M, dtype=int)
status['service-metrics']['hpa']['edge-area']['max-replicas'] = np.zeros(M,dtype=int)
status['service-metrics']['hpa']['edge-area']['cpu-threshold'] = np.ones(M,dtype=int)*0.6
status['service-metrics']['hpa']['edge-area']['last-update'] = 0 # last update time
status['service-metrics']['ucpu'] = dict()
status['service-metrics']['ucpu']['cloud-area'] = dict()
status['service-metrics']['ucpu']['cloud-area']['info'] = 'Actual CPU utilizatiion vector in seconds per second for cloud area'
status['service-metrics']['ucpu']['cloud-area']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['ucpu']['cloud-area']['last-update'] = 0 # last update time
status['service-metrics']['ucpu']['edge-area'] = dict()
status['service-metrics']['ucpu']['edge-area']['info'] = 'Actual CPU utilizatiion vector in seconds per second for edge area'
status['service-metrics']['ucpu']['edge-area']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['ucpu']['edge-area']['last-update'] = 0 # last update time
status['service-metrics']['umem'] = dict()
status['service-metrics']['umem']['cloud-area'] = dict()
status['service-metrics']['umem']['cloud-area']['info'] = 'Actual memory utilizatiion vector in bytes for cloud area'
status['service-metrics']['umem']['cloud-area']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['umem']['cloud-area']['last-update'] = 0 # last update time
status['service-metrics']['umem']['edge-area'] = dict()
status['service-metrics']['umem']['edge-area']['info'] = 'Actual memory utilizatiion vector in bytes for edge area'
status['service-metrics']['umem']['edge-area']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['umem']['edge-area']['last-update'] = 0 # last update time
status['service-metrics']['qcpu'] = dict()
status['service-metrics']['qcpu']['cloud-area'] = dict()
status['service-metrics']['qcpu']['cloud-area']['info'] = 'Requested CPU per pod in seconds per second for cloud area'
status['service-metrics']['qcpu']['cloud-area']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['qcpu']['cloud-area']['last-update'] = 0 # last update time
status['service-metrics']['qcpu']['edge-area'] = dict()
status['service-metrics']['qcpu']['edge-area']['info'] = 'Requested CPU per pod in seconds per second for edge area'
status['service-metrics']['qcpu']['edge-area']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['qcpu']['edge-area']['last-update'] = 0 # last update time
status['service-metrics']['qmem'] = dict()
status['service-metrics']['qmem']['cloud-area'] = dict()
status['service-metrics']['qmem']['cloud-area']['info'] = 'Requested Mem per pod in seconds per second for cloud area'
status['service-metrics']['qmem']['cloud-area']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['qmem']['cloud-area']['last-update'] = 0 # last update time
status['service-metrics']['qmem']['edge-area'] = dict()
status['service-metrics']['qmem']['edge-area']['info'] = 'Requested Mem per pod in seconds per second for edge area'
status['service-metrics']['qmem']['edge-area']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['qmem']['edge-area']['last-update'] = 0 # last update time
status['service-metrics']['service-lambda'] = dict()
status['service-metrics']['service-lambda']['info'] = 'Request rate vector in req/s'
status['service-metrics']['service-lambda']['value'] = np.zeros(M, dtype=float)
status['service-metrics']['service-lambda']['last-update'] = 0 # last update time
status['service-metrics']['edge-user-delay']=dict()
status['service-metrics']['edge-user-delay']['value'] = 0.0 # last update time
status['service-metrics']['edge-user-delay']['info'] = 'Average edge user delay in ms' # last update time
status['service-metrics']['edge-user-delay']['last-update'] = 0 # last update time
status['service-metrics']['edge-user-delay-quantile']=dict()
status['service-metrics']['edge-user-delay-quantile']['value'] = 0.0
status['service-metrics']['edge-user-delay-quantile']['info'] = 'Edge user delay quantile in ms'
status['service-metrics']['edge-user-delay-quantile']['last-update'] = 0 # last update time
status['service-metrics']['edge-user-target-delay']=dict()
status['service-metrics']['edge-user-target-delay']['value'] = 0.0 # last update time
status['service-metrics']['edge-user-target-delay']['info'] = 'Average edge user target delay in ms' # last update time
status['service-metrics']['edge-user-target-delay']['last-update'] = 0 # last update time
status['service-metrics']['network'] = dict()
status['service-metrics']['network']['edge-cloud-rtt-ms'] = dict()
status['service-metrics']['network']['edge-cloud-rtt-ms']['value'] = time_to_ms_converter(gma_config['spec']['network']['edge-cloud-rtt-ms'])
status['service-metrics']['network']['edge-cloud-rtt-ms']['info'] = 'Round trip time from edge area to cloud area in ms'
status['service-metrics']['network']['edge-cloud-rtt-ms']['last-update'] = 0 # last update time
status['service-metrics']['network']['edge-cloud-rtt-multiplier'] = dict()
status['service-metrics']['network']['edge-cloud-rtt-multiplier']['value'] = gma_config['spec']['network']['edge-cloud-rtt-multiplier']
status['service-metrics']['network']['edge-cloud-rtt-multiplier']['info'] = 'The RTT multiplier is applied to network RTT to obtain gRPC/HTTP-level round-trip time. Depends on the application. Configure with offline measurements'
status['service-metrics']['network']['edge-cloud-rtt-multiplier']['last-update'] = 0 # last update time
status['service-metrics']['network']['cloud-edge-bps'] = dict()
status['service-metrics']['network']['cloud-edge-bps']['value'] = bitrate_to_bps_converter(gma_config['spec']['network']['cloud-edge-bps'])
status['service-metrics']['network']['cloud-edge-bps']['info'] = 'Network capacity in bit per second from cloud area to edge area in bps'
status['service-metrics']['network']['cloud-edge-bps']['last-update'] = 0 # last update time
status['service-metrics']['network']['edge-cloud-bps'] = dict()
status['service-metrics']['network']['edge-cloud-bps']['value'] = bitrate_to_bps_converter(gma_config['spec']['network']['edge-cloud-bps'])
status['service-metrics']['network']['edge-cloud-bps']['info'] = 'Network capacity in bit per second from edge area to cloud area in bps'
status['service-metrics']['network']['edge-cloud-bps']['last-update'] = 0 # last update time
status['service-metrics']['cost'] = dict()
status['service-metrics']['cost']['edge-area'] = dict()
status['service-metrics']['cost']['edge-area']['cpu'] = dict()
status['service-metrics']['cost']['edge-area']['cpu']['value'] = gma_config['spec']['edge-area']['cost']['cpu']
status['service-metrics']['cost']['edge-area']['cpu']['info'] = 'Cost of CPU in the edge area per hour'
status['service-metrics']['cost']['edge-area']['memory'] = dict()
status['service-metrics']['cost']['edge-area']['memory']['value'] = gma_config['spec']['edge-area']['cost']['memory']
status['service-metrics']['cost']['edge-area']['memory']['info'] = 'Cost of memory in the edge area per GB per hour'
status['service-metrics']['cost']['edge-area']['network'] = dict()
status['service-metrics']['cost']['edge-area']['network']['value'] = gma_config['spec']['edge-area']['cost']['memory']
status['service-metrics']['cost']['edge-area']['network']['info'] = 'Cost of edge-to-cloud network traffic per GB'
status['service-metrics']['cost']['cloud-area'] = dict()
status['service-metrics']['cost']['cloud-area']['cpu'] = dict()
status['service-metrics']['cost']['cloud-area']['cpu']['value'] = gma_config['spec']['cloud-area']['cost']['cpu']
status['service-metrics']['cost']['cloud-area']['cpu']['info'] = 'Cost of CPU in the cloud area per hour'
status['service-metrics']['cost']['cloud-area']['memory'] = dict()
status['service-metrics']['cost']['cloud-area']['memory']['value'] = gma_config['spec']['cloud-area']['cost']['memory']
status['service-metrics']['cost']['cloud-area']['memory']['info'] = 'Cost of memory bytes in the cloud area per GB per hour'
status['service-metrics']['cost']['cloud-area']['network'] = dict()
status['service-metrics']['cost']['cloud-area']['network']['value'] = gma_config['spec']['cloud-area']['cost']['memory']
status['service-metrics']['cost']['cloud-area']['network']['info'] = 'Cost of cloud-to-edge network traffic per GB'
status['service-metrics']['me-resource-scaling'] = dict()
status['service-metrics']['me-resource-scaling']['info'] = 'Cloud-to-edge multi-edge resource scaling factor'
status['service-metrics']['me-resource-scaling']['value'] = np.ones(M, dtype=float) * gma_config['spec']['edge-area']['default-resource-scaling']
status['service-metrics']['me-resource-scaling']['last-update'] = 0 # last update time
# Get the pod/deployment regex for each service
parse_yaml()
check_inits()
def check_inits():
# check workload exists for any service
for service_name in status['service-info']:
if status['service-info'][service_name]['regex']['cloud-area']['workload']['regex'] == '':
logger.critical(f"Workload not found for service {service_name} in the cloud-area")
exit(1)
if status['service-info'][service_name]['regex']['edge-area']['workload']['regex'] == '':
logger.critical(f"Workload not found for service {service_name} in the edge-area")
exit(1)
# check workloads for cloud area and edge have the same type
for service_name in status['service-info']:
if status['service-info'][service_name]['regex']['cloud-area']['workload']['type'] != status['service-info'][service_name]['regex']['edge-area']['workload']['type']:
logger.critical(f"Workload type for service {service_name} in the cloud-area and edge-area are different")
exit(1)
# check hpa exists for any service
for service_name in status['service-info']:
if status['service-info'][service_name]['regex']['cloud-area']['hpa'] == '':
logger.critical(f"HPA not found for service {service_name} in the cloud-area")
exit(1)
if status['service-info'][service_name]['regex']['edge-area']['hpa'] == '':
logger.critical(f"HPA not found for service {service_name} in the edge-area")
exit(1)
#TODO check the node of the cluster have different topology labels
def cpu_to_sec(cpu_string):
cpu_string = str(cpu_string)
if cpu_string.endswith("m"):
value = float(cpu_string.split("m")[0])/1000.0
else:
value = float(cpu_string)
return value
def mem_to_byte(mem_string):
mem_string = str(mem_string)
if mem_string.endswith("M"):
value = float(mem_string.split("M")[0])*1e6
elif mem_string.endswith("k"):
value = float(mem_string.split("k")[0])*1000
elif mem_string.endswith("Ki"):
value = float(mem_string.split("Ki")[0])*1024
elif mem_string.endswith("Mi"):
value = float(mem_string.split("Mi")[0])*1024*1024
elif mem_string.endswith("G"):
value = float(mem_string.split("G")[0])*1e9
elif mem_string.endswith("Gi"):
value = float(mem_string.split("Gi")[0])*1024*1024*1024
else:
value = float(mem_string)
return value
def time_to_ms_converter(delay_string):
delay_string = str(delay_string)
if delay_string.endswith("ms"):
value = int(delay_string.split("ms")[0])
elif delay_string.endswith("s"):
value = int(delay_string.split("s")[0])*1000
elif delay_string.endswith("m"):
value = int(delay_string.split("m")[0])*60000
elif delay_string.endswith("h"):
value = int(delay_string.split("h")[0])*3600000
else:
value = int(delay_string)*1000
return value
def bitrate_to_bps_converter(cap_string):
cap_string=str(cap_string)
if cap_string.endswith("kbps"):
value = int(cap_string.split("kbps")[0])*1000
elif cap_string.endswith("Mbps"):
value = int(cap_string.split("Mbps")[0])*1000000
elif cap_string.endswith("Gbps"):
value = int(cap_string.split("Gbps")[0])*1000000000
elif cap_string.endswith("bps"):
value = int(cap_string.split("bps")[0])
else:
value = int(cap_string)
return value
class GMAStataMachine():
# hpa_running: Camping with HPA is runnning
# Camping: periodic monitoring of the system and no need to take action. No HPA running.
# Offload_alarm: offload delay threshold is reached; check if this state persist for a while
# Unoffload_alarm: unoffload delay threshold is reached; check if this state persist for a while
# Offloading: offload action in progress
# Unoffloading: unoffload action in progress
def __init__(self):
self.run()
return
def hpa_running(self):
logger.info('_________________________________________________________')
logger.info('Entering Camping State (HPA Running)')
logger.info(f'sleeping for {stabilizaiton_window_sec} stabilization sec')
time.sleep(stabilizaiton_window_sec)
if update_and_check_HPA():
self.next = self.hpa_running
else:
self.next = self.camping
return
def camping(self):
logger.info('_________________________________________________________')
logger.info('Entering Camping State')
if update_and_check_HPA():
self.next = self.hpa_running
return
update_ingress_delay()
update_ingress_delay_quantile()
# check average delay violation for offloading
logger.info(f'user delay: {status['service-metrics']['edge-user-delay']['value']} ms')
logger.info(f'user delay quantile {delay_quantile}: {status['service-metrics']['edge-user-delay-quantile']['value']} ms')
if status['service-metrics']['edge-user-delay']['value'] > offload_delay_threshold_ms:
logger.info('Delay above offload threshold')
if np.all(status['service-metrics']['hpa']['edge-area']['current-replicas'][:-1] > 0):
logger.warning('All microservice in the edge area, can not offload more')
self.next = self.camping
logger.info(f'sleeping for {sync_period_sec} sync sec')
time.sleep(sync_period_sec)
return
else:
self.next = self.offload_alarm
return
# check quantile delay violation for offloading
if status['service-metrics']['edge-user-delay-quantile']['value'] > offload_delay_quantile_threshold_ms:
logger.info('Delay above offload quantile threshold')
if np.all(status['service-metrics']['hpa']['edge-area']['current-replicas'][:-1] > 0):
logger.warning('All microservice in the edge area, can not offload more')
self.next = self.camping
logger.info(f'sleeping for {sync_period_sec} sync sec')
time.sleep(sync_period_sec)
return
else:
self.next = self.offload_alarm
return
unoffload_cond1 = False # for unoffloading both avg and quantile condition must be satisfied
unoffload_cond2 = False
# check average delay violation for unoffloading
if status['service-metrics']['edge-user-delay']['value'] < unoffload_delay_threshold_ms:
logger.info('Delay below unoffload threshold')
if np.all(status['service-metrics']['hpa']['edge-area']['current-replicas'][:-1] == 0):
logger.warning('No microservice in the edge area, can not unoffload more')
self.next = self.camping
logger.info(f'sleeping for {sync_period_sec} sync sec')
time.sleep(sync_period_sec)
return
else:
unoffload_cond1 = True
# check delay quantile violation for unoffloading
if status['service-metrics']['edge-user-delay-quantile']['value'] < unoffload_delay_quantile_threshold_ms:
logger.info('Delay below unoffload quantile threshold')
if np.all(status['service-metrics']['hpa']['edge-area']['current-replicas'][:-1] == 0):
logger.warning('No microservice in the edge area, can not unoffload more')
self.next = self.camping
logger.info(f'sleeping for {sync_period_sec} sync sec')
time.sleep(sync_period_sec)
return
else:
unoffload_cond2 = True
if unoffload_cond1 and unoffload_cond2:
self.next = self.unoffload_alarm
return
else:
self.next = self.camping
logger.info(f'sleeping for {sync_period_sec} sync sec')
time.sleep(sync_period_sec)
return
def offload_alarm(self):
logger.info('_________________________________________________________')
logger.info('Entering Offload Alarm')
stabilization_cycle_sec = 30
n_cycles = int(np.ceil(stabilizaiton_window_sec/stabilization_cycle_sec))
for i in range(n_cycles):
if update_and_check_HPA():
self.next = self.hpa_running
return
update_ingress_delay()
update_ingress_delay_quantile()
logger.info(f'user delay: {status['service-metrics']['edge-user-delay']['value']} ms')
logger.info(f'user delay quantile {delay_quantile}: {status['service-metrics']['edge-user-delay-quantile']['value']} ms')
if status['service-metrics']['edge-user-delay']['value'] > offload_delay_threshold_ms or status['service-metrics']['edge-user-delay-quantile']['value'] > offload_delay_quantile_threshold_ms:
logger.info(f'sleeping for {stabilizaiton_window_sec-i*stabilization_cycle_sec} stabilization sec')
time.sleep(stabilization_cycle_sec)
else:
self.next = self.camping
return
self.next = self.offloading
return
def unoffload_alarm(self):
logger.info('_________________________________________________________')
logger.info('Entering Unoffload Alarm')
stabilization_cycle_sec = 30
n_cycles = int(np.ceil(stabilizaiton_window_sec/stabilization_cycle_sec))
for i in range(n_cycles):
if update_and_check_HPA():
self.next = self.hpa_running