forked from mekaneeky/pretrain-subnet
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy path__init__.py
557 lines (529 loc) · 20.8 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import datetime as dt
import math
from pathlib import Path
from typing import Dict, List, Tuple
import torch
from taoverse.model.competition.data import Competition, ModelConstraints
from taoverse.model.competition.epsilon import LinearDecay
from taoverse.model.eval.normalization import NormalizationId
from taoverse.model.eval.task import EvalTask
from taoverse.model.tts.e2tts import E2TTS
from transformers import (
BartForCausalLM,
FalconForCausalLM,
Gemma2ForCausalLM,
GemmaForCausalLM,
GPT2LMHeadModel,
GPTJForCausalLM,
GPTNeoXForCausalLM,
LlamaForCausalLM,
MistralForCausalLM,
PhiForCausalLM,
Qwen2ForCausalLM,
)
import pretrain as pt
from competitions.data import CompetitionId
from pretrain.datasets.ids import DatasetId
from pretrain.eval.method import EvalMethodId
# ---------------------------------
# Project Constants.
# ---------------------------------
# Release
__version__ = "6.0.3"
# Validator schema version
__validator_version__ = "4.6.2"
version_split = __validator_version__.split(".")
__spec_version__ = (
(1000 * int(version_split[0]))
+ (10 * int(version_split[1]))
+ (1 * int(version_split[2]))
)
# The validator WANDB project.
WANDB_PROJECT = "pretraining-validators"
# The uid for this subnet.
SUBNET_UID = 9
# The root directory of this project.
ROOT_DIR = Path(__file__).parent.parent
# block to start the tts competition
BLOCK_TTS = 5_177_981
# Minimum stake to consider a validator when checking for miners with weights.
# This corresponded to top-10 validator on july 31st, 2024
WEIGHT_SYNC_VALI_MIN_STAKE = 50_000
# Minimum percent of weight on a vali for a miner to be considered a top miner.
# Since there can be multiple competitions at different reward percentages we can't just check biggest.
WEIGHT_SYNC_MINER_MIN_PERCENT = 0.05
# Validator eval batch size.
BATCH_SIZE = 1
BATCH_SIZE_TTS = 1
# Validators number of pages to eval over miners on each step.
# This will be used before activation block BLOCK_MULTI_DATASETS
PAGES_PER_EVAL = 22
PAGES_PER_EVAL_STACK_V2_DEDUP = 9
# These well be used after activation block
PAGES_PER_EVAL_FINEWEB = 15
PAGES_PER_EVAL_FINEWEB2 = 15
PAGES_PER_EVAL_STACK2 = 30
PAGES_PER_EVAL_PES2OX = 2
PAGES_PER_EVAL_FINEMATH3P = 6
PAGES_PER_EVAL_WEBMATH3P = 6
PAGES_PER_EVAL_PPLSPEECH = 1
# Maximum number of batches to use for evaluation per dataset.
MAX_BATCHES_PER_DATASET = 50
# A mapping of block numbers to the supported model types as of that block.
ALLOWED_MODEL_TYPES_1 = {
GPT2LMHeadModel,
MistralForCausalLM,
LlamaForCausalLM,
BartForCausalLM,
FalconForCausalLM,
GPTNeoXForCausalLM,
GPTJForCausalLM,
Qwen2ForCausalLM,
}
ALLOWED_MODEL_TYPES_2 = {
MistralForCausalLM,
LlamaForCausalLM,
BartForCausalLM,
FalconForCausalLM,
GPTNeoXForCausalLM,
PhiForCausalLM,
GemmaForCausalLM,
Gemma2ForCausalLM,
Qwen2ForCausalLM,
}
ALLOWED_MODEL_TYPES_TTS = {
E2TTS
}
# Synchronize on blocks roughly every 30 minutes.
SYNC_BLOCK_CADENCE = 150
# Delay at least as long as the sync block cadence with an additional buffer.
EVAL_BLOCK_DELAY = SYNC_BLOCK_CADENCE + 100
MODEL_CONSTRAINTS_BY_COMPETITION_ID_TMP: Dict[CompetitionId, ModelConstraints] = {
CompetitionId.B3_MODEL: ModelConstraints(
max_model_parameter_size=3_400_000_000,
min_model_parameter_size=3_200_000_000,
sequence_length=4096,
allowed_architectures=ALLOWED_MODEL_TYPES_2,
tokenizer="Xenova/gpt-4",
kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2",
},
eval_block_delay=EVAL_BLOCK_DELAY,
epsilon_func=LinearDecay(0.005, 0.0005, 7200 * 7),
max_bytes=15 * 1024 * 1024 * 1024,
),
CompetitionId.B14_MODEL: ModelConstraints(
max_model_parameter_size=13_900_000_000,
min_model_parameter_size=13_700_000_000,
sequence_length=4096,
allowed_architectures=ALLOWED_MODEL_TYPES_2,
tokenizer="Xenova/gpt-4",
kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2",
},
eval_block_delay=EVAL_BLOCK_DELAY,
epsilon_func=LinearDecay(0.005, 0.0005, 7200 * 10),
max_bytes=29 * 1024 * 1024 * 1024,
),
}
MODEL_CONSTRAINTS_BY_COMPETITION_ID: Dict[CompetitionId, ModelConstraints] = {
CompetitionId.B3_MODEL: ModelConstraints(
max_model_parameter_size=3_400_000_000,
min_model_parameter_size=3_200_000_000,
sequence_length=4096,
allowed_architectures=ALLOWED_MODEL_TYPES_2,
tokenizer="Xenova/gpt-4",
kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2",
},
eval_block_delay=EVAL_BLOCK_DELAY,
epsilon_func=LinearDecay(0.005, 0.0001, 7200 * 2),
max_bytes=15 * 1024 * 1024 * 1024,
),
CompetitionId.B14_MODEL: ModelConstraints(
max_model_parameter_size=13_900_000_000,
min_model_parameter_size=13_700_000_000,
sequence_length=4096,
allowed_architectures=ALLOWED_MODEL_TYPES_2,
tokenizer="Xenova/gpt-4",
kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2",
},
eval_block_delay=EVAL_BLOCK_DELAY,
epsilon_func=LinearDecay(0.005, 0.0001, 7200 * 2),
max_bytes=29 * 1024 * 1024 * 1024,
),
CompetitionId.TTS_V0: ModelConstraints(
max_model_parameter_size=400_000_000,
min_model_parameter_size=350_000_000,
sequence_length=None,
allowed_architectures=ALLOWED_MODEL_TYPES_TTS,
tokenizer="e2tts",
eval_block_delay=EVAL_BLOCK_DELAY,
epsilon_func=LinearDecay(0.005, 0.0005, 7200 * 10),
max_bytes=2 * 1024 * 1024 * 1024,
),
}
# Schedule of competitions by block.
COMPETITION_SCHEDULE_BY_BLOCK: List[Tuple[int, List[Competition]]] = [
(
0,
[
Competition(
CompetitionId.B3_MODEL,
MODEL_CONSTRAINTS_BY_COMPETITION_ID_TMP[CompetitionId.B3_MODEL],
0.3,
eval_tasks=[
EvalTask(
name="FINEWEB",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEWEB,
},
weight=0.30,
),
EvalTask(
name="FINEWEB_EDU2",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB2,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEWEB2,
},
weight=0.25,
),
EvalTask(
name="STACKV2_DEDUP",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.STACK2,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_STACK2,
},
weight=0.35,
),
EvalTask(
name="PES2OX",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.PES2OX,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_PES2OX,
},
weight=0.05,
),
EvalTask(
name="FINEMATH_3P",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEMATH3P,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEMATH3P,
},
weight=0.03,
),
EvalTask(
name="INFIWEBMATH_3P",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.WEBMATH3P,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_WEBMATH3P,
},
weight=0.02,
),
],
),
Competition(
CompetitionId.B14_MODEL,
MODEL_CONSTRAINTS_BY_COMPETITION_ID_TMP[CompetitionId.B14_MODEL],
0.7,
eval_tasks=[
EvalTask(
name="FINEWEB",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEWEB,
},
weight=0.3,
),
EvalTask(
name="FINEWEB_EDU2",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB2,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEWEB2,
},
weight=0.25,
),
EvalTask(
name="STACKV2_DEDUP",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.STACK2,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_STACK2,
},
weight=0.35,
),
EvalTask(
name="PES2OX",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.PES2OX,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_PES2OX,
},
weight=0.05,
),
EvalTask(
name="FINEMATH_3P",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEMATH3P,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEMATH3P,
},
weight=0.03,
),
EvalTask(
name="INFIWEBMATH_3P",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.WEBMATH3P,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_WEBMATH3P,
},
weight=0.02,
),
],
),
],
),
(
BLOCK_TTS,
[
Competition(
CompetitionId.TTS_V0,
MODEL_CONSTRAINTS_BY_COMPETITION_ID[CompetitionId.TTS_V0],
0.55,
eval_tasks=[
EvalTask(
name="PPL_SPEECH",
method_id=EvalMethodId.WER,
dataset_id=DatasetId.PPLSPEECH,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE_TTS,
"num_pages": PAGES_PER_EVAL_PPLSPEECH,
"target_sr": 24000,
"target_rms": 0.1,
"ref_audio_max_duration": 15,
"hop_length": 256
},
weight=1.0,
),
],
),
Competition(
CompetitionId.B3_MODEL,
MODEL_CONSTRAINTS_BY_COMPETITION_ID[CompetitionId.B3_MODEL],
0.15,
eval_tasks=[
EvalTask(
name="FINEWEB",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEWEB,
},
weight=0.3,
),
EvalTask(
name="FINEWEB_EDU2",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB2,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEWEB2,
},
weight=0.25,
),
EvalTask(
name="STACKV2_DEDUP",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.STACK2,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_STACK2,
},
weight=0.35,
),
EvalTask(
name="PES2OX",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.PES2OX,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_PES2OX,
},
weight=0.05,
),
EvalTask(
name="FINEMATH_3P",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEMATH3P,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEMATH3P,
},
weight=0.03,
),
EvalTask(
name="INFIWEBMATH_3P",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.WEBMATH3P,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_WEBMATH3P,
},
weight=0.02,
),
],
),
Competition(
CompetitionId.B14_MODEL,
MODEL_CONSTRAINTS_BY_COMPETITION_ID[CompetitionId.B14_MODEL],
0.3,
eval_tasks=[
EvalTask(
name="FINEWEB",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEWEB,
},
weight=0.3,
),
EvalTask(
name="FINEWEB_EDU2",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB2,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEWEB2,
},
weight=0.25,
),
EvalTask(
name="STACKV2_DEDUP",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.STACK2,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_STACK2,
},
weight=0.35,
),
EvalTask(
name="PES2OX",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.PES2OX,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_PES2OX,
},
weight=0.05,
),
EvalTask(
name="FINEMATH_3P",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEMATH3P,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_FINEMATH3P,
},
weight=0.03,
),
EvalTask(
name="INFIWEBMATH_3P",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.WEBMATH3P,
normalization_id=NormalizationId.NONE,
dataset_kwargs={
"batch_size": BATCH_SIZE,
"num_pages": PAGES_PER_EVAL_WEBMATH3P,
},
weight=0.02,
),
],
),
],
),
]
for block_and_competitions in COMPETITION_SCHEDULE_BY_BLOCK:
assert math.isclose(
sum(competition.reward_percentage for competition in block_and_competitions[1]),
1.0,
)
for comp in block_and_competitions[1]:
assert math.isclose(
sum(task.weight for task in comp.eval_tasks),
1.0,
)
# The number of run steps to log to single wandb run.
MAX_RUN_STEPS_PER_WANDB_RUN = 100
# ---------------------------------
# Miner/Validator Model parameters.
# ---------------------------------
weights_version_key = __spec_version__
# validator weight moving average term
alpha = 0.5
# validator scoring exponential temperature
# 0.01 gives ~96% to best model with only ~3 receiving any weights.
temperature = 0.01
# validator eval batch min to keep for next loop.
sample_min = 5
# Max number of uids that can be either pending eval or currently being evaluated.
# We allow the sample_min per competition + 10 additional models to be held at any one time.
updated_models_limit = sample_min * len(MODEL_CONSTRAINTS_BY_COMPETITION_ID) + 10
# time required between updates to the chain.
chain_update_cadence = dt.timedelta(minutes=20)
# Number of blocks required between retrying evaluation of a model.
model_retry_cadence = 300 # Roughly 1 hour
# How frequently to check the models given weights by other large validators.
scan_top_model_cadence = dt.timedelta(minutes=30)