해당 과제는 코스피 데이터 셋을 활용해 앞으로의 주가 등락을 예측하는 Task이다. 코스피(KOSPI)란 KOrea Composite Stock Price Index의 약어로 우리나라의 주가 동향을 대표하는 Index이며 증권 거래소에 상장된 종목들의 주식 가격을 종합적으로 표시한 수치로 시장 전체의 주가 움직임을 이해할 수 있는 지표이다. 전체 데이터 셋은 1981.05.01부터 2022.08.31까지의 일별 KOSPI 데이터로 이루어져 있으며 Open(시가), Close(종가), High(고가), Low(저가), Volume(거래량) 열을 크롤링하여 구축하였다. 그 중 분석에 사용한 열은 Close(종가) 데이터이며 이를 기반으로 시계열 분석을 진행하였다.
Python 3.8
PyTorch 1.8
Cudatoolkit 11.1.
pip3 install -r requirements.txt
python3 main_rnn_lstm.py
Train Loss | Evaluate Loss | |
---|---|---|
RNN_epoch_0 | 0.60377 | 2.29561 |
RNN_epoch_10 | 0.00169 | 0.17583 |
RNN_epoch_100 | 0.00036 | 0.02924 |
Train Loss | Evaluate Loss | |
---|---|---|
LSTM_epoch_0 | 0.31240 | 0.76642 |
LSTM_epoch_10 | 0.00110 | 0.09611 |
LSTM_epoch_100 | 0.00036 | 0.01363 |
python3 plot.py
![](https://private-user-images.githubusercontent.com/75362328/243323688-59d0e9c8-0556-447f-8a49-bb906513f9e4.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk5NDIwMzIsIm5iZiI6MTczOTk0MTczMiwicGF0aCI6Ii83NTM2MjMyOC8yNDMzMjM2ODgtNTlkMGU5YzgtMDU1Ni00NDdmLThhNDktYmI5MDY1MTNmOWU0LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTklMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE5VDA1MDg1MlomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTQ3NmNhMzZiZTAwN2QxNzVlMTg0ODQzNGYwN2FiMjkwODc2MmNhOGQ1NTc3MTg4MjBiNTk0ODM5MWFlNmYwYzkmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.Wgy235gJPCgPf7tB4pxMcFT31rdnWd6ATWlne-Xru_I)
![](https://private-user-images.githubusercontent.com/75362328/243327900-4bafda09-3799-444f-acba-9b56f02673a3.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk5NDIwMzIsIm5iZiI6MTczOTk0MTczMiwicGF0aCI6Ii83NTM2MjMyOC8yNDMzMjc5MDAtNGJhZmRhMDktMzc5OS00NDRmLWFjYmEtOWI1NmYwMjY3M2EzLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTklMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE5VDA1MDg1MlomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWRlYjljNDdiNzFhM2VhZGNjYzdkM2I4YmU2MGZjNWEzZDBkY2VkMmI0MTRkOWQzOGMxNjZlZWNjZDEyMzU4NmImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.Bn1UH2lwXfwKnaa5HeOyUx-0djbg-p0u0jMJcz4nzzA)
python3 main_transformer.py
Train Loss | Evaluate Loss | |
---|---|---|
Transformer_epoch_0 | 0.08487 | 0.03479 |
Transformer_epoch_10 | 0.00070 | 0.00517 |
Transformer_epoch_100 | 0.00037 | 0.00149 |
![](https://private-user-images.githubusercontent.com/75362328/243327871-7035c59b-8ec8-4ca0-a726-eceb143592db.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk5NDIwMzIsIm5iZiI6MTczOTk0MTczMiwicGF0aCI6Ii83NTM2MjMyOC8yNDMzMjc4NzEtNzAzNWM1OWItOGVjOC00Y2EwLWE3MjYtZWNlYjE0MzU5MmRiLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTklMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjE5VDA1MDg1MlomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPThlN2E4OTFlNWQzZDQ4ZDg3YmZkZTJlYTY2YjdkM2FkNjRlNDUzYjNmZjQ1NTYzMTIxZjU3YzVkYjIxMjdkMjImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.aPD-NUsOaegSdF9SajDYyPJRMBDxvCUFKzX8StOWUdg)