-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_ssreflect.v
330 lines (230 loc) · 10.9 KB
/
test_ssreflect.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
From Coq Require Import BinInt Zify.
From mathcomp Require Import all_ssreflect zify ssrZ.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* FIXME: dual instances are not exported *)
Import Order.Theory.
Local Delimit Scope Z_scope with Z.
Implicit Types (b : bool) (n m : nat).
(******************************************************************************)
(* ssrbool *)
(******************************************************************************)
Fact test_andb b1 b2 : b1 (+) b2 = Bool.eqb b1 (~~ b2).
Proof. zify_op; reflexivity. Qed.
Fact test_eqb b1 b2 : eqb b1 b2 = Bool.eqb b1 b2.
Proof. zify_op; reflexivity. Qed.
Fact test_eq_op_bool b1 b2 : (b1 == b2) = Bool.eqb b1 b2.
Proof. zify_op; reflexivity. Qed.
Fact test_le_bool b1 b2 : (b1 <= b2)%O = implb b1 b2.
Proof. zify_op; reflexivity. Qed.
Fact test_ge_bool b1 b2 : (b1 >= b2)%O = implb b2 b1.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_le_bool (b1 b2 : bool^d) : (b1 <=^d b2)%O = implb b2 b1.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_ge_bool (b1 b2 : bool^d) : (b1 >=^d b2)%O = implb b1 b2.
Proof. zify_op; reflexivity. Qed.
Fact test_lt_bool b1 b2 : (b1 < b2)%O = ~~ b1 && b2.
Proof. zify_op; reflexivity. Qed.
Fact test_gt_bool b1 b2 : (b1 > b2)%O = ~~ b2 && b1.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_lt_bool (b1 b2 : bool^d) : (b1 <^d b2)%O = b1 && ~~ b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_gt_bool (b1 b2 : bool^d) : (b1 >^d b2)%O = b2 && ~~ b1.
Proof. zify_op; reflexivity. Qed.
(* FIXME: ge, gt *)
Fact test_min_bool b1 b2 : Order.min b1 b2 = b1 && b2.
Proof. zify_op; reflexivity. Qed.
Fact test_max_bool b1 b2 : Order.max b1 b2 = b1 || b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_min_bool (b1 b2 : bool^d) : Order.dual_min b1 b2 = b1 || b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_max_bool (b1 b2 : bool^d) : Order.dual_max b1 b2 = b1 && b2.
Proof. zify_op; reflexivity. Qed.
(* FIXME: meet and join below are broken but the tests pass because they are *)
(* convertible anyway. *)
Fact test_meet_bool b1 b2 : (b1 `&` b2)%O = b1 && b2.
Proof. zify_op; reflexivity. Qed.
Fact test_join_bool b1 b2 : (b1 `|` b2)%O = b1 || b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_meet_bool (b1 b2 : bool^d) : (b1 `&^d` b2)%O = b1 || b2.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_join_bool (b1 b2 : bool^d) : (b1 `|^d` b2)%O = b1 && b2.
Proof. zify_op; reflexivity. Qed.
Fact test_bottom_bool : \bot%O = false :> bool.
Proof. zify_op; reflexivity. Qed.
Fact test_top_bool : \top%O = true :> bool.
Proof. zify_op; reflexivity. Qed.
(* FIXME: Notations 0^d and 1^d are broken. *)
Fact test_dual_bottom_bool : \bot%O = true :> bool^d.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_top_bool : \top%O = false :> bool^d.
Proof. zify_op; reflexivity. Qed.
Fact test_sub_bool b1 b2 : (b1 `\` b2)%O = b1 && ~~ b2.
Proof. zify_op; reflexivity. Qed.
Fact test_compl_bool b : (~` b)%O = ~~ b.
Proof. zify_op; reflexivity. Qed.
(******************************************************************************)
(* ssrnat *)
(******************************************************************************)
Fact test_eqn n m : eqn n m = Z.eqb (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_eq_op_nat n m : (n == m) = Z.eqb (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_addn_rec n m : Z.of_nat (n + m)%Nrec = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_addn n m : Z.of_nat (n + m) = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_addn_trec n m :
Z.of_nat (NatTrec.add n m) = (Z.of_nat n + Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_subn_rec n m :
Z.of_nat (n - m)%Nrec = Z.max 0 (Z.of_nat n - Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_subn n m :
Z.of_nat (n - m) = Z.max 0 (Z.of_nat n - Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_muln_rec n m : Z.of_nat (n * m)%Nrec = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_muln n m : Z.of_nat (n * m) = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_muln_trec n m :
Z.of_nat (NatTrec.mul n m) = (Z.of_nat n * Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_leq n m : (n <= m) = (Z.of_nat n <=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
(* FIXME: geq, ltn, gtn *)
Fact test_minn n m : Z.of_nat (minn n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_maxn n m : Z.of_nat (maxn n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_nat_of_bool b : Z.of_nat (nat_of_bool b) = Z.b2z b.
Proof. zify_op; reflexivity. Qed.
Fact test_double n : Z.of_nat n.*2 = (2 * Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_double_trec n : Z.of_nat (NatTrec.double n) = (2 * Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_expn n m : Z.of_nat (n ^ m) = (Z.of_nat n ^ Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_expn_trec n m :
Z.of_nat (NatTrec.exp n m) = (Z.of_nat n ^ Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_eq_op_N (n m : N) : (n == m) = (Z.of_N n =? Z.of_N m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_nat_of_pos p : Z.of_nat (nat_of_pos p) = Z.pos p.
Proof. zify_op; reflexivity. Qed.
Fact test_nat_of_bin (n : N) : Z.of_nat (nat_of_bin n) = Z.of_N n.
Proof. zify_op; reflexivity. Qed.
Fact test_pos_of_nat n m :
Z.pos (pos_of_nat n m) = Z.max 1 (Z.of_nat n * 2 - Z.of_nat m + 1).
Proof. zify_op; reflexivity. Qed.
Fact test_bin_of_nat n : Z.of_N (bin_of_nat n) = Z.of_nat n.
Proof. zify_op; reflexivity. Qed.
Fact test_le_nat n m : (n <= m)%O = (Z.of_nat n <=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_ge_nat n m : (n >= m)%O = (Z.of_nat m <=? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_le_nat (n m : nat^d) :
(n <=^d m)%O = (Z.of_nat n >=? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_ge_nat (n m : nat^d) :
(n >=^d m)%O = (Z.of_nat m >=? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_lt_nat n m : (n < m)%O = (Z.of_nat n <? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_gt_nat n m : (n > m)%O = (Z.of_nat m <? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_lt_nat (n m : nat^d) :
(n <^d m)%O = (Z.of_nat n >? Z.of_nat m)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_gt_nat (n m : nat^d) :
(n >^d m)%O = (Z.of_nat m >? Z.of_nat n)%Z.
Proof. zify_op; reflexivity. Qed.
(* FIXME: ge, gt *)
Fact test_min_nat n m :
Z.of_nat (Order.min n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_max_nat n m :
Z.of_nat (Order.max n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_min_nat (n m : nat^d) :
Z.of_nat (Order.dual_min n m) = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_max_nat (n m : nat^d) :
Z.of_nat (Order.dual_max n m) = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_meet_nat n m : Z.of_nat (n `&` m)%O = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_join_nat n m : Z.of_nat (n `|` m)%O = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_meet_nat (n m : nat^d) :
Z.of_nat (n `&^d` m)%O = Z.max (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_join_nat (n m : nat^d) :
Z.of_nat (n `|^d` m)%O = Z.min (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_bottom_nat : Z.of_nat \bot%O = 0%Z.
Proof. zify_op; reflexivity. Qed.
(******************************************************************************)
(* div (divn, modn, dvdn, gcdn, lcmn, and coprime) *)
(******************************************************************************)
Notation divZ := zify_ssreflect.SsreflectZifyInstances.divZ.
Notation modZ := zify_ssreflect.SsreflectZifyInstances.modZ.
Fact test_divn n m : Z.of_nat (divn n m) = divZ (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_modn n m : Z.of_nat (modn n m) = modZ (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dvdn n m : dvdn n m = (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_odd n : odd n = (modZ (Z.of_nat n) 2 =? 1)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_odd_trec n : NatTrec.odd n = (modZ (Z.of_nat n) 2 =? 1)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_half n : Z.of_nat (half n) = divZ (Z.of_nat n) 2.
Proof. zify_op; reflexivity. Qed.
Fact test_uphalf n : Z.of_nat (uphalf n) = divZ (Z.of_nat n + 1) 2.
Proof. zify_op; reflexivity. Qed.
Fact test_gcdn n m : Z.of_nat (gcdn n m) = Z.gcd (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_lcmn n m : Z.of_nat (lcmn n m) = Z.lcm (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_coprime n m : coprime n m = (Z.gcd (Z.of_nat n) (Z.of_nat m) =? 1)%Z.
Proof. zify_op; reflexivity. Qed.
(******************************************************************************)
(* natdvd in order.v *)
(******************************************************************************)
Fact test_le_natdvd (n m : natdvd) :
(n <= m)%O = (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_lt_natdvd (n m : natdvd) :
(n < m)%O =
~~ (Z.of_nat m =? Z.of_nat n)%Z && (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_le_natdvd (n m : natdvd^d) :
(m <= n)%O = (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_lt_natdvd (n m : natdvd^d) :
(m < n)%O =
~~ (Z.of_nat m =? Z.of_nat n)%Z && (modZ (Z.of_nat m) (Z.of_nat n) =? 0)%Z.
Proof. zify_op; reflexivity. Qed.
(* FIXME: ge, gt *)
Fact test_meet_natdvd (n m : natdvd) :
Z.of_nat (n `&` m)%O = Z.gcd (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_join_natdvd (n m : natdvd) :
Z.of_nat (n `|` m)%O = Z.lcm (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_meet_natdvd (n m : natdvd^d) :
Z.of_nat (n `&` m)%O = Z.lcm (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_dual_join_natdvd (n m : natdvd^d) :
Z.of_nat (n `|` m)%O = Z.gcd (Z.of_nat n) (Z.of_nat m).
Proof. zify_op; reflexivity. Qed.
Fact test_bottom_natdvd : Z.of_nat (\bot%O : natdvd) = 1%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_top_natdvd : Z.of_nat (\top%O : natdvd) = 0%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_bottom_natdvd : Z.of_nat (\bot^d%O : natdvd^d) = 0%Z.
Proof. zify_op; reflexivity. Qed.
Fact test_dual_top_natdvd : Z.of_nat (\top^d%O : natdvd^d) = 1%Z.
Proof. zify_op; reflexivity. Qed.