-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathplotVenn.py
212 lines (177 loc) · 6.87 KB
/
plotVenn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# plot the overlaps for the guides VEGFA and EMX1 for which we have multiple studies
# note to self: use homebrew's python to run this /usr/local/bin/python2.7
import os, logging
from annotateOffs import *
from collections import defaultdict
#from scipy.stats import linregress
import matplotlib as mpl
mpl.use('Agg')
from matplotlib_venn import venn3, venn2
import matplotlib.pyplot as plt
import numpy as np
def readMitPredOts(fnames):
" return a set with all MIT predicted off-targets "
ret = set()
for fname in fnames:
for line in open(fname):
fs = line.split(", ")
ret.add(fs[4])
return ret
def parseAllOffs(fname, skipCell=False):
""" return a dict targetSeq -> study -> list of (off-target sequence, modFreq)
and a dict targetSeq -> targetName
"""
nameToTarget = defaultdict(dict)
targetToName = {}
for row in iterTsvRows(fname):
if row.type=="on-target":
nameToTarget[row.name] = row.seq
targetToName[row.seq] = row.name
seqs = defaultdict(dict)
for row in iterTsvRows(fname):
if row.type!="off-target":
continue
targetSeq = nameToTarget[row.name]
study = row.name.split("_")[0]
if skipCell:
study = study.split("/")[0]
modFreq = float(row.score)
#if modFreq<0.001:
#continue
seqs[targetSeq].setdefault(study, []).append( (row.seq, modFreq) )
# special filtering: make two indexes into data to facilitate removal
studyCounts = defaultdict(int) # offtarget -> number of studies
maxFreq = defaultdict(float) # offtarget -> highest mod freq
for targetSeq, studyFreqs in seqs.iteritems():
for study, seqFreqs in studyFreqs.iteritems():
for seq, freq in seqFreqs:
studyCounts[seq] +=1
maxFreq[seq] = max(maxFreq[seq], freq)
# special filtering: remove offtarget < 0.001 when found only by one study
# and with a freq < 0.001
remOts = set()
for otSeq, count in studyCounts.iteritems():
if count != 1:
continue
if maxFreq[otSeq] < 0.001:
remOts.add(otSeq)
filtSeqs = defaultdict(dict)
for targetSeq, studyFreqs in seqs.iteritems():
for study, seqFreqs in studyFreqs.iteritems():
for seq, freq in seqFreqs:
if seq in remOts:
continue
filtSeqs[targetSeq].setdefault(study, []).append((seq, freq))
#assert("Kim16" in filtSeqs["GGGTGGGGGGAGTTTGCTCCTGG"])
return filtSeqs, targetToName
def createTsv(overlapGuides):
# create the TSV files
outTsvFnames = []
seqs, seqNames = parseAllOffs("offtargets.tsv")
mitSeqs = readMitPredOts(["mitOfftargets/Hsu_EMX1.3.csv", "mitOfftargets/Frock_VEGFA.csv"])
for guideSeq, guideName in overlapGuides:
# prep for tsv file: convert to dict otSeq -> study -> freq
studySeqs = seqs[guideSeq]
otFreqs = defaultdict(dict)
studies = sorted(studySeqs)
#print guideName, studies, studySeqs
for studyName in studies:
otInfo = studySeqs[studyName]
for otSeq, otFreq in otInfo:
otFreqs[otSeq][studyName] = otFreq
# output to tsv file
ofh = open("out/venn-%s.tsv" % guideName, "w")
headers = ["guide", "off-target", "mismatch", "diffLocs", "offtScore"]
headers.extend(studies)
headers.append("mitPredicted")
ofh.write("\t".join(headers)+"\n")
rows = []
for otSeq, studyFreqs in otFreqs.iteritems():
mmCount, diffLogo = countMms(guideSeq, otSeq)
otScore = calcHitScore(guideSeq, otSeq)
isMitPred = (otSeq in mitSeqs)
row = [guideSeq, otSeq, mmCount, diffLogo, otScore]
for study in studies:
freq = studyFreqs.get(study, "notFound")
if study=="Hsu" and freq=="notFound":
freq = "notTested"
row.append(str(freq))
row.append(str(isMitPred))
rows.append(row)
rows.sort(key=operator.itemgetter(2))
for row in rows:
ofh.write("\t".join([str(x) for x in row])+"\n")
outTsvFnames.append(ofh.name)
print "wrote data to %s" % ", ".join(outTsvFnames)
def main():
#plt.figure(figsize=(8,10))
seqs, seqNames = parseAllOffs("offtargets.tsv", skipCell=True)
#overlapGuides = [
#("GAGTCCGAGCAGAAGAAGAAGGG", "EMX1"),
#("GGGTGGGGGGAGTTTGCTCCTGG", "VEGFA")
#]
overlapGuides = []
for targetSeq, studyOffs in seqs.iteritems():
#print targetSeq, studyOffs.keys(), seqNames[targetSeq]
parts = seqNames[targetSeq].split("_")
if len(parts)==2:
name = parts[-1]
if len(parts)==3:
name = parts[1]+" "+parts[2]
if len(studyOffs)>=2:
overlapGuides.append( (targetSeq, name) )
#print overlapGuides
#plotCount = plt.subplots(len(overlapGuides), 1)
plotCount = 2
fig, axArr = plt.subplots(plotCount, 1)
fig.set_size_inches(5,plotCount*5)
studyDescs = {
"Tsai" : "GuideSeq\n(Tsai et al, HEK293)",
"Frock" : "Translocation\nsequencing\n(HTGTS,\nFrock et al, HEK293T)",
"Hsu" : "Targeted sequencing\n(Hsu et al,\nHEK293FT)",
"Kim" : "DigenomeSeq\n(Kim et al 2015, HAP1)",
"Kim16" : "DigenomeSeq2\n(Kim et al 2016, HeLa)",
}
plotRow = 0
for (guideSeq, guideName) in overlapGuides:
if guideName not in ["EMX1", "VEGFA site1"]:
continue
print "guide: ",guideName
studySeqs = seqs[guideSeq]
ax = axArr[plotRow]
labels = []
sets = []
for studyName, seqInfo in studySeqs.items():
#if studyName not in studyDescs:
#continue
if studyName=="Kim" and guideName=="EMX1":
continue
if studyName=="Hsu":
continue
print "using guides from ", studyName
studyName = studyDescs[studyName]
labels.append(studyName)
studyOts = set()
for otSeq, otFreq in seqInfo:
if float(otFreq)!=0.0:
studyOts.add(otSeq)
print "offtarget-count:", len(studyOts)
sets.append(set(studyOts))
if len(sets)==3:
#print guideName, sets, labels, ax
venn3(subsets=sets, set_labels=labels, ax=ax, labelSize="small")
ax.set_title(guideName)
elif len(sets)==2:
venn2(subsets=sets, set_labels=labels, ax=ax)
ax.set_title(guideName)
else:
print len(sets)
assert(False)
plotRow += 1
fig.tight_layout()
outFname = "out/venn.pdf"
plt.savefig(outFname)
plt.savefig(outFname.replace(".pdf", ".png"))
print "wrote plot to %s and .png" % outFname
createTsv(overlapGuides)
main()