-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCandidateGenerationPixel_Color.m
135 lines (104 loc) · 5.13 KB
/
CandidateGenerationPixel_Color.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
function [pixelCandidates] = CandidateGenerationPixel_Color(im, space)
switch space
case 'normrgb'
im=double(im);
[pixelCandidates] = ThresholdsStrategy(im);
case 'gaussian_thresholds'
im=double(im);
[pixelCandidates] = GaussianFitWithThresholds(im);
case 'hsv_ycbcr'
[pixelCandidates] = HSVStrategy(im);
case 'hsv_ycbcr+morph_op'
[pixelCandidates] = MorphOpStrategy(im);
case 'hsv_ycbcr+morph_op+hole_filling'
[pixelCandidates] = HoleFillingStrategy(im);
case 'hist_packprop'
[pixelCandidates] = HistogramBackprop(im);
case 'hsv-morph_op2'
[pixelCandidates1] = ColorSegmentation(im, 'blue');
[pixelCandidates2] = ColorSegmentation(im, 'red');
pixelCandidates = pixelCandidates1 | pixelCandidates2;
pixelCandidates = MorphologicalTransform(pixelCandidates);
otherwise
error('Incorrect color space defined');
end
end
function [pixelCandidates] = HoleFillingStrategy(im)
pixelCandidates = HSVStrategy(im);
se = ones(17);
pixelCandidates = imclose(imopen(pixelCandidates, se), se);
pixelCandidates = imfill(pixelCandidates, 'holes');
% pixelPrecision = 0.3646 pixelAccuracy = 0.9959 pixelSpecificity = 0.9978 pixelRecall = 0.3984 f1score = 0.3808
end
function [pixelCandidates] = MorphOpStrategy(im)
pixelCandidates = HSVStrategy(im);
se = ones(17);
pixelCandidates = imclose(imopen(pixelCandidates, se), se);
% pixelPrecision = 0.3574; pixelAccuracy = 0.9959; pixelSpecificity = 0.9978; pixelRecall = 0.3862; f1score = 0.3713;
end
function [pixelCandidates] = ThresholdsStrategy(im)
%At first none pixel is candidate
pixelCandidates = zeros(size(im,1),size(im,2));
% Method 1 (Tresholds by colors) %
%Find pixel candidates according to different colors
pixelCandidates = pixelCandidates | (im(:,:,1)>210 & im(:,:,2)<70 & im(:,:,3)<60); %Redish colors
pixelCandidates = pixelCandidates | (im(:,:,1)>15 & im(:,:,2)<90 & im(:,:,3)<190); %Blueish colors
pixelCandidates = pixelCandidates | (im(:,:,1)>15 & im(:,:,2)<15 & im(:,:,3)<15); %Blackish colors
end
function [pixelCandidates] = ThresholdsStrategy2(im)
%At first none pixel is candidate
pixelCandidates = zeros(size(im,1),size(im,2));
%Find pixel candidates according to different colors
pixelCandidates = pixelCandidates | (im(:,:,1)>70 & im(:,:,2)<70 & im(:,:,3)<60); %Redish colors
pixelCandidates = pixelCandidates | (im(:,:,1)<40 & im(:,:,2)<100 & im(:,:,3)>70); %Blueish colors
end
function [pixelCandidates] = GaussianFitWithThresholds(im)
%At first none pixel is candidate
load('thresholds08.mat')
pixelCandidates = zeros(size(im,1),size(im,2));
for i=1:size(thresholds,2)
pixelCandidates = pixelCandidates | (im(:,:,1) > thresholds(i).r_min & im(:,:,1)<thresholds(i).r_max & im(:,:,2)>thresholds(i).g_min & im(:,:,2)<thresholds(i).g_max & im(:,:,3)>thresholds(i).b_min & im(:,:,3)<thresholds(i).b_max );
end
end
function [pixelCandidates] = HSVStrategy(im)
im_hsv = rgb2hsv(im);
mask_hsv_red = (im_hsv(:,:,1)<0.03 | im_hsv(:,:,1)>0.9); %Redish colors
mask_hsv_blue = (im_hsv(:,:,1)<0.75 & im_hsv(:,:,1)>0.55); %Blueish colors
im_ycbcr = rgb2ycbcr(im);
mask_ycbcr_red = (im_ycbcr(:,:,3)<175 & im_ycbcr(:,:,3)>135); %Redish colors
mask_ycbcr_blue = (im_ycbcr(:,:,2)<175 & im_ycbcr(:,:,2)>135); %Blueish colors
mask_red = mask_hsv_red .* mask_ycbcr_red;
mask_blue = mask_hsv_blue .* mask_ycbcr_blue;
pixelCandidates = mask_red | mask_blue;
end
function [pixelCandidates] = HistogramBackprop(im)
pixelCandidates = zeros(size(im,1),size(im,2));
im_ycbcr = rgb2ycbcr(im);
load('../week2/normalized_histograms/h_y_1.mat')
load('../week2/normalized_histograms/h_y_2.mat')
load('../week2/normalized_histograms/h_y_3.mat')
load('../week2/normalized_histograms/h_cbcr_1.mat')
load('../week2/normalized_histograms/h_cbcr_2.mat')
load('../week2/normalized_histograms/h_cbcr_3.mat')
addpath('../week2')
for i=1:size(im_ycbcr,1)
for j=1:size(im_ycbcr,2)
pixel = im_ycbcr(i,j,:);
pixel = pixel(:);
pixelValue = 0;
% Probabilites for the Y channels
p_y_1 = HistogramBackpropagation(h_y_1, pixel(1));
p_y_2 = HistogramBackpropagation(h_y_2, pixel(1));
p_y_3 = HistogramBackpropagation(h_y_3, pixel(1));
% Probabilities for the CbCr channels
p_cbcr_1 = HistogramBackpropagation(h_cbcr_1, [pixel(2); pixel(3)]);
p_cbcr_2 = HistogramBackpropagation(h_cbcr_2, [pixel(2); pixel(3)]);
p_cbcr_3 = HistogramBackpropagation(h_cbcr_3, [pixel(2); pixel(3)]);
% Return 1 if it complies with certain thresholds
pixelValue = pixelValue | (p_y_1 > 0.005 & p_cbcr_1 > 0.6e-3);
pixelValue = pixelValue | (p_y_2 > 0.01 & p_cbcr_2 > 0.6e-3);
pixelValue = pixelValue | (p_y_3 > 0.015 & p_cbcr_3 > 0.6e-3);
pixelCandidates(i,j) = pixelValue;
end
end
end