-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdemo.py
85 lines (68 loc) · 2.57 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
import math
import argparse
import random
import logging
import torch
import torch.distributed as dist
import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model
import numpy as np
import cv2
from PIL import Image
def main():
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YMAL file.')
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
#### loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
print('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
#### create train and val dataloader
for phase, dataset_opt in opt['datasets'].items():
if phase == 'demo':
demo_set = create_dataset(dataset_opt)
demo_loader = create_dataloader(demo_set, dataset_opt, opt, None)
print('Number of demo images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(demo_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
#### create model
model = create_model(opt)
# #### set save dir
# util.mkdir_and_rename(opt['path']['root'])
#### training
for demo_data in demo_loader:
model.feed_data_demo(demo_data)
model.test()
visuals = model.get_current_visuals_demo()
out_img = visuals['out_img'].numpy()
lq_img = visuals['lq_img'].numpy()
name_lq = demo_data['name_lq'][0]
c, h, w = lq_img.shape
out_img = out_img[:c, :h, :w]
out_img = out_img[::-1,:,:]
out_img = out_img.transpose(1,2,0)
out_img = np.clip(out_img,0,1)
Image.fromarray((out_img*255).astype(np.uint8)).save(os.path.join(opt['path']['experiments_root'], name_lq+'.png'))
if __name__ == '__main__':
main()