-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtb_reader.py
194 lines (154 loc) · 6.5 KB
/
tb_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import glob
import os
import re
import io
from PIL import Image
import pandas as pd
from pathlib import Path
from typing import List
from tensorboard.backend.event_processing import event_accumulator
from tensorboard.plugins.hparams.plugin_data_pb2 import HParamsPluginData
class TagConverter:
def __init__(self, tag_path: Path, events_file:str=None) -> None:
self.tag_path = tag_path
if events_file is None:
events_file = os.listdir(str(self.tag_path))[0]
self.events_file = self.tag_path / events_file
self.ea = event_accumulator.EventAccumulator(
str(self.events_file),
size_guidance={ # see below regarding this argument
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 10000,
event_accumulator.HISTOGRAMS: 1,
event_accumulator.TENSORS: 10,
},
)
self.ea.Reload()
@property
def scalar_tags(self) -> List[str]:
return self.ea.Tags()["scalars"]
def get_df(self, tag: str) -> pd.DataFrame:
return pd.DataFrame(self.ea.Scalars(tag))
@property
def exists(self):
self.events_file.exists()
@property
def name(self):
self.tag_path.name
class TensorboardReader:
def __init__(self, run_dir: str, run: str) -> None:
self.run_path = Path(run_dir).resolve() / run
self._base_event = None
@property
def base_event(self) -> TagConverter:
if self._base_event is None:
base_event_file = TensorboardReader.match_name(self.run_path, "events.out.*")
self._base_event = self.read_score("", events_file=base_event_file)
return self._base_event
def read_score(self, name: str, events_file:str=None) -> TagConverter:
return TagConverter(self.run_path / name, events_file=events_file)
@staticmethod
def match_first(dir: str, pattern: str, regex=False) -> Path:
p = Path(dir).resolve()
if regex:
return [x for x in p.iterdir() if re.search(pattern, x.name)][0]
else:
return Path(glob.glob(str(p / pattern))[0])
@staticmethod
def get_reader(dir: str, arch: str, beta_kl: str, beta_neg: str, beta_rec: str, gamma_r: str):
s = f".*_{arch}.*_{beta_kl}.*_{beta_neg}.*_{beta_rec}.*_{gamma_r}.*"
run = TensorboardReader.match_first(dir, s, regex=True)
return TensorboardReader(dir, run)
@staticmethod
def match_name(dir: str, pattern: str, regex=False) -> str:
return TensorboardReader.match_first(dir=dir, pattern=pattern, regex=regex).name
@property
def exists(self):
return self.run_path.exists()
# from: https://github.com/j3soon/tbparse/blob/0a6368183b1fa3e30c4c0fd88eebb1edc10a8c5a/tbparse/summary_reader.py#L826
@property
def hparams(self):
ssi_tag = "_hparams_/session_start_info"
hparam_base_dir = self.match_name(self.run_path, "16*") # 16* because run_name is str(time.time() in SummaryWriter)
hparam_event_score = self.read_score(hparam_base_dir, events_file=self.match_name(self.run_path / hparam_base_dir, "events.out*"))
hparam_event_ea = hparam_event_score.ea
hparam_content = hparam_event_ea.PluginTagToContent("hparams")
data = hparam_content[ssi_tag]
plugin_data: HParamsPluginData = HParamsPluginData.FromString(data)
hparam_dict = dict(plugin_data.session_start_info.hparams)
metric_dict = {}
for tag in hparam_event_score.scalar_tags:
metric_dict[tag] = hparam_event_score.get_df(tag)["value"][0]
return hparam_dict, metric_dict
### --------------
### SCORES
### --------------
@property
def bvae_score(self) -> pd.DataFrame:
return self.read_score("bvae_score_score").get_df("bvae_score")
@property
def bvae_score_scaled(self) -> pd.DataFrame:
return self.read_score("bvae_score_scaled").get_df("bvae_score")
@property
def explicitness_score(self) -> pd.DataFrame:
return self.read_score("mod_expl_explicitness_score").get_df("mod_expl")
@property
def modularity_score(self) -> pd.DataFrame:
return self.read_score("mod_expl_modularity_score").get_df("mod_expl")
@property
def mig_score(self) -> pd.DataFrame:
return self.base_event.get_df("mig_score")
@property
def dci_completeness_score(self) -> pd.DataFrame:
return self.read_score("dci_dci_completeness_score").get_df("dci")
@property
def dci_disentanglement_score(self) -> pd.DataFrame:
return self.read_score("dci_dci_disentanglement_score").get_df("dci")
@property
def dci_informativeness_score(self) -> pd.DataFrame:
return self.read_score("dci_dci_informativeness_score").get_df("dci")
### --------------
### LOSSES
### --------------
@property
def r_loss_scaled(self) -> pd.DataFrame:
return self.read_score("losses_r_loss").get_df("losses")
@property
def r_loss(self) -> pd.DataFrame:
return self.read_score("losses_unscaled_r_loss").get_df("losses_unscaled")
@property
def kl_loss_scaled(self) -> pd.DataFrame:
return self.read_score("losses_kl").get_df("losses")
@property
def kl_loss(self) -> pd.DataFrame:
return self.read_score("losses_unscaled_kl").get_df("losses_unscaled")
@property
def expelbo_f_loss_scaled(self) -> pd.DataFrame:
return self.read_score("losses_expelbo_f").get_df("losses")
@property
def expelbo_f_loss(self) -> pd.DataFrame:
return self.read_score("losses_unscaled_expelbo_f").get_df("losses_unscaled")
@property
def diff_kl(self) -> pd.DataFrame:
return self.base_event.get_df("diff_kl")
@property
def loss_e(self) -> pd.DataFrame:
return self.base_event.get_df("lossE")
@property
def loss_d(self) -> pd.DataFrame:
return self.base_event.get_df("lossD")
### --------------
### IMAGES
### --------------
@property
def reconstrutions(self) -> List:
return self.base_event.ea.Images("reconstructions")
def get_reconstruction_image(self, idx: int) -> Image:
image = self.reconstrutions[idx]
buf = io.BytesIO(image.encoded_image_string)
return Image.open(buf)
@property
def last_reconstruction(self) -> Image:
return self.get_reconstruction_image(-1)