Skip to content

Commit d5de5ff

Browse files
authored
Update sparse+dense hybrid search example (#2005)
use IP as the BGE-M3 dense embeddings relevance example Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
1 parent 722d2b5 commit d5de5ff

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

examples/hello_hybrid_sparse_dense.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ def random_embedding(texts):
8686
# into memory for efficient search.
8787
sparse_index = {"index_type": "SPARSE_INVERTED_INDEX", "metric_type": "IP"}
8888
col.create_index("sparse_vector", sparse_index)
89-
dense_index = {"index_type": "FLAT", "metric_type": "L2"}
89+
dense_index = {"index_type": "FLAT", "metric_type": "IP"}
9090
col.create_index("dense_vector", dense_index)
9191
col.load()
9292

@@ -102,7 +102,7 @@ def random_embedding(texts):
102102
sparse_search_params = {"metric_type": "IP"}
103103
sparse_req = AnnSearchRequest(query_embeddings["sparse"],
104104
"sparse_vector", sparse_search_params, limit=k)
105-
dense_search_params = {"metric_type": "L2"}
105+
dense_search_params = {"metric_type": "IP"}
106106
dense_req = AnnSearchRequest(query_embeddings["dense"],
107107
"dense_vector", dense_search_params, limit=k)
108108

0 commit comments

Comments
 (0)