-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrrt.py
117 lines (90 loc) · 3.34 KB
/
rrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import sys
import math
import numpy as np
import env, plotting, utils
class Node:
def __init__(self, n):
self.x = n[0]
self.y = n[1]
self.parent = None
class Rrt:
def __init__(self, s_start, s_goal, step_len, goal_sample_rate, iter_max):
self.s_start = Node(s_start)
self.s_goal = Node(s_goal)
self.step_len = step_len
self.goal_sample_rate = goal_sample_rate
self.iter_max = iter_max
self.vertex = [self.s_start]
self.env = env.Env()
self.plotting = plotting.Plotting(s_start, s_goal)
self.utils = utils.Utils()
self.x_range = self.env.x_range
self.y_range = self.env.y_range
self.obs_circle = self.env.obs_circle
self.obs_rectangle = self.env.obs_rectangle
self.obs_boundary = self.env.obs_boundary
def planning(self):
for i in range(self.iter_max):
node_rand = self.generate_random_node(self.goal_sample_rate)
node_near = self.nearest_neighbor(self.vertex, node_rand)
node_new = self.new_state(node_near, node_rand)
if node_new and not self.utils.is_collision(node_near, node_new):
self.vertex.append(node_new)
dist, _ = self.get_distance_and_angle(node_new, self.s_goal)
if dist <= self.step_len and not self.utils.is_collision(
node_new, self.s_goal
):
self.new_state(node_new, self.s_goal)
return self.extract_path(node_new)
return None
def generate_random_node(self, goal_sample_rate):
delta = self.utils.delta
if np.random.random() > goal_sample_rate:
return Node(
(
np.random.uniform(self.x_range[0] + delta, self.x_range[1] - delta),
np.random.uniform(self.y_range[0] + delta, self.y_range[1] - delta),
)
)
return self.s_goal
@staticmethod
def nearest_neighbor(node_list, n):
return node_list[
int(np.argmin([math.hypot(nd.x - n.x, nd.y - n.y) for nd in node_list]))
]
def new_state(self, node_start, node_end):
dist, theta = self.get_distance_and_angle(node_start, node_end)
dist = min(self.step_len, dist)
node_new = Node(
(
node_start.x + dist * math.cos(theta),
node_start.y + dist * math.sin(theta),
)
)
node_new.parent = node_start
return node_new
def extract_path(self, node_end):
path = [(self.s_goal.x, self.s_goal.y)]
node_now = node_end
while node_now.parent is not None:
node_now = node_now.parent
path.append((node_now.x, node_now.y))
return path
@staticmethod
def get_distance_and_angle(node_start, node_end):
dx = node_end.x - node_start.x
dy = node_end.y - node_start.y
return math.hypot(dx, dy), math.atan2(dy, dx)
def main():
x_start = (2, 2) # Starting node
x_goal = (49, 24) # Goal node
rrt = Rrt(x_start, x_goal, 0.5, 0.05, 10000)
path = rrt.planning()
if path:
print("Path Found!")
rrt.plotting.animation(rrt.vertex, path, "RRT", True)
else:
print("No Path Found!")
if __name__ == "__main__":
main()