diff --git a/airbnb_price_prediction_regression/airbnb_price_prediction_regression_py.ipynb b/airbnb_price_prediction_regression/airbnb_price_prediction_regression_py.ipynb index 0fa15065..4fcbd931 100644 --- a/airbnb_price_prediction_regression/airbnb_price_prediction_regression_py.ipynb +++ b/airbnb_price_prediction_regression/airbnb_price_prediction_regression_py.ipynb @@ -2061,7 +2061,7 @@ "source": [ "def modelEval(ytest, yPreds):\n", " print(\"\\n---- Evaluation Metrics ----\")\n", - " print(f\"Mean Absoulte Error: {np.mean(np.abs(yPreds - ytest)):.2f}\")\n", + " print(f\"Mean Absolute Error: {np.mean(np.abs(yPreds - ytest)):.2f}\")\n", " print(f\"Mean Squared Error: {np.mean(np.power(yPreds - ytest, 2)):.2f}\")\n", " print(f\"Root Mean Squared Error: {np.sqrt(np.mean(np.power(yPreds - ytest, 2))):.2f}\")\n", " print(f\"R2 score: {r2score(ytest, yPreds):.2f}\")" @@ -2143,7 +2143,7 @@ } ], "source": [ - "model = mlpack.LinearRegression(check_input_matrices=False, copy_all_inputs=False, lambda_=0.0, verbose=False)\n", + "model = mlpack.LinearRegression()\n", "\n", "k = 5\n", "kf = KFold(n_splits = k, random_state = None)\n", @@ -2173,7 +2173,7 @@ " modelEval(y_test, yPredsLr)\n", "\n", "print(\"\\n-- Mean Evaluation Metrics --\")\n", - "print(f\"Mean Absoulte Error: {np.mean(mae_score):.2f}\")\n", + "print(f\"Mean Absolute Error: {np.mean(mae_score):.2f}\")\n", "print(f\"Mean Squared Error: {np.mean(mse_score):.2f}\")\n", "print(f\"Root Mean Squared Error: {np.mean(rmse_score):.2f}\")\n", "print(f\"R2 score: {np.mean(r2_score):.2f}\")" @@ -2255,7 +2255,7 @@ } ], "source": [ - "model = mlpack.LinearRegression(check_input_matrices=False, copy_all_inputs=False, lambda_=0.1, verbose=False)\n", + "model = mlpack.LinearRegression()\n", "\n", "k = 5\n", "kf = KFold(n_splits = k, random_state = None)\n", @@ -2285,7 +2285,7 @@ " modelEval(y_test, yPredsRr)\n", "\n", "print(\"\\n-- Mean Evaluation Metrics --\")\n", - "print(f\"Mean Absoulte Error: {np.mean(mae_score):.2f}\")\n", + "print(f\"Mean Absolute Error: {np.mean(mae_score):.2f}\")\n", "print(f\"Mean Squared Error: {np.mean(mse_score):.2f}\")\n", "print(f\"Root Mean Squared Error: {np.mean(rmse_score):.2f}\")\n", "print(f\"R2 score: {np.mean(r2_score):.2f}\")" @@ -2397,7 +2397,7 @@ " modelEval(y_test, yPredsBlr)\n", "\n", "print(\"\\n-- Mean Evaluation Metrics --\")\n", - "print(f\"Mean Absoulte Error: {np.mean(mae_score):.2f}\")\n", + "print(f\"Mean Absolute Error: {np.mean(mae_score):.2f}\")\n", "print(f\"Mean Squared Error: {np.mean(mse_score):.2f}\")\n", "print(f\"Root Mean Squared Error: {np.mean(rmse_score):.2f}\")\n", "print(f\"R2 score: {np.mean(r2_score):.2f}\")"