-
-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added tests for PipeOpEncodePLQuantiles
- Loading branch information
Showing
1 changed file
with
77 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,17 +1,84 @@ | ||
context("PipeOpEncodePL") | ||
|
||
test_that("PipeOpEncodePL - basic properties", { | ||
test_that("PipeOpEncodePLQuantiles - basic properties", { | ||
task = mlr_tasks$get("iris") | ||
expect_datapreproc_pipeop_class(PipeOpEncodePLQuantiles, task = task) | ||
}) | ||
|
||
test_that("PipeOpEncodePLQuantiles - train and predict", { | ||
op = PipeOpEncodePLQuantiles$new() | ||
dt = data.table( | ||
target = as.factor(rep(c("A", "B"), 4)), | ||
x = c(2, 8, 4, 10, 6, 12, NA, NA), | ||
y = c(NA, NA, 10, 25, 40, 60, 65, 95) | ||
) | ||
task = TaskClassif$new(id = "test", backend = dt, target = "target") | ||
|
||
train_out = op$train(list(task))[[1L]] | ||
predict_out = op$predict(list(task))[[1L]] | ||
|
||
# Test that bins are correct | ||
expect_equal(op$state$bins, list(x = c(2, 7, 12), y = c(10, 50, 95))) | ||
|
||
# Test encoding and column naming | ||
dt_encoded = data.table( | ||
x.bin1 = c(0, 1, 2/5, 1, 4/5, 1, NA, NA), | ||
x.bin2 = c(0, 1/5, 0, 3/5, 0, 1, NA, NA), | ||
y.bin1 = c(NA, NA, 0, 15/40, 3/4, 1, 1, 1), | ||
y.bin2 = c(NA, NA, 0, 0, 0, 10/45, 15/45, 1) | ||
) | ||
expect_equal(train_out$data(cols = train_out$feature_names), dt_encoded) | ||
expect_equal(predict_out$data(cols = predict_out$feature_names), dt_encoded) | ||
|
||
# Changed param values | ||
op$param_set$set_values(numsplits = 3, type = 1) | ||
|
||
train_out = op$train(list(task))[[1L]] | ||
predict_out = op$predict(list(task))[[1L]] | ||
|
||
# Test that bins are correct | ||
expect_equal(op$state$bins, list(x = c(2, 4, 8, 12), y = c(10, 25, 60, 95))) | ||
|
||
# Test encoding and column naming | ||
dt_encoded = data.table( | ||
x.bin1 = c(0, 1, 1, 1, 1, 1, NA, NA), | ||
x.bin2 = c(0, 1, 0, 1, 0.5, 1, NA, NA), | ||
x.bin3 = c(0, 0, 0, 0.5, 0, 1, NA, NA), | ||
y.bin1 = c(NA, NA, 0, 1, 1, 1, 1, 1), | ||
y.bin2 = c(NA, NA, 0, 0, 15/35, 1, 1, 1), | ||
y.bin3 = c(NA, NA, 0, 0, 0, 0, 5/35, 1) | ||
) | ||
expect_equal(train_out$data(cols = train_out$feature_names), dt_encoded) | ||
expect_equal(predict_out$data(cols = predict_out$feature_names), dt_encoded) | ||
}) | ||
|
||
test_that("PipeOpEncodePLTree - basic properties", { | ||
skip_if_not_installed("rpart") | ||
|
||
task = mlr_tasks$get("mtcars") | ||
expect_datapreproc_pipeop_class(PipeOpEncodePL, constargs = list(task_type = "TaskRegr"), task = task) | ||
expect_datapreproc_pipeop_class(PipeOpEncodePLTree, constargs = list(task_type = "TaskRegr"), task = task) | ||
|
||
task = mlr_tasks$get("iris") | ||
expect_datapreproc_pipeop_class(PipeOpEncodePL, task = task) | ||
expect_datapreproc_pipeop_class(PipeOpEncodePL, constargs = list(task_type = "TaskClassif"), task = task) | ||
expect_datapreproc_pipeop_class(PipeOpEncodePLTree, constargs = list(task_type = "TaskClassif"), task = task) | ||
}) | ||
|
||
test_that("PipeOpEncodePLTree - TaskRegr train and predict", { | ||
op = PipeOpEncodePLTree$new(task_type = "TaskRegr") | ||
dt = data.table( | ||
target = c(1.5, 20, 3.5, 30.8, 14.3, 90.4, 15, 60.4), | ||
x = c(2, 8, 4, 10, 6, 12, NA, NA), | ||
y = c(NA, NA, 10, 25, 40, 60, 65, 95) | ||
) | ||
task = TaskRegr$new(id = "test", backend = dt, target = "target") | ||
|
||
train_out = op$train(list(task))[[1L]] | ||
predict_out = op$predict(list(task))[[1L]] | ||
|
||
# Test that bins are correct | ||
#expect_equal(op$state$bins, list(x = c(), y = c())) | ||
|
||
}) | ||
|
||
# Tests: | ||
# - different methods | ||
# - with params (not all for regtree, hopefully) | ||
# - test on tasks with simple data that behaviour is as expected (compare dts) | ||
# - for different task types | ||
# - TODO: decide how to handle NAs in feature columns and test that | ||
test_that("PipeOpEncodePLTree - TaskClassif train and predict", { | ||
|
||
}) |