Skip to content

Commit 69b2958

Browse files
committed
maths: analys_b lösning 20241031 1a
1 parent 1c63c1a commit 69b2958

File tree

2 files changed

+69
-0
lines changed

2 files changed

+69
-0
lines changed

maths/analys_b/20230821/1a-bestämd_integral.tex

+1
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,7 @@
2424

2525
\begin{document}
2626
Beräkna integralen
27+
2728
\[
2829
\int_0^1 x \cdot e^x dx
2930
\]

maths/analys_b/20241031/svar01.tex

+68
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,68 @@
1+
\documentclass[11pt]{article}
2+
\usepackage[utf8]{inputenc}
3+
\usepackage[T1]{fontenc} % Fix weird character
4+
\usepackage{geometry}
5+
\usepackage{amsmath}
6+
\usepackage{amssymb}
7+
\usepackage{gensymb}
8+
\usepackage{spalign}
9+
\usepackage{xfrac}
10+
\usepackage{parskip}
11+
\usepackage{float} % figure[H]
12+
\usepackage[style=ieee,backend=biber]{biblatex}
13+
\usepackage[breaklinks=true,bookmarks=true,hidelinks]{hyperref}
14+
\usepackage{tikz}
15+
16+
\geometry{
17+
a4paper,
18+
hmargin=2.54cm,
19+
tmargin=1.27cm,
20+
bmargin=1.27cm,
21+
includeheadfoot
22+
}
23+
\setcounter{secnumdepth}{0} % Disable section numbering
24+
25+
\begin{document}
26+
27+
\section{1.a Beräkna integralen}
28+
29+
\[
30+
\int_0^3 x \cdot \sqrt{16 + x^2} dx
31+
\]
32+
33+
Lösning:
34+
35+
\textbf{Variabelbyte (p.284)}
36+
37+
\begin{align}
38+
\int_0^3 x \cdot \sqrt{16 + x^2} dx &= \left[\begin{aligned}
39+
t &= 16 + x^2 \\
40+
\frac{dt}{dx} &= 2x \ \Leftrightarrow \ \frac{1}{2}dt = x
41+
\end{aligned}\right] \\
42+
&= \int_{a}^{b} \frac{1}{2}\sqrt{t}\ dt \\
43+
&= \frac{1}{2} \int_{a}^{b}\sqrt{t}\ dt \\
44+
&= \frac{1}{2} \left[\frac{2}{3}t^{\frac{3}{2}}\right]_{a}^{b}
45+
= \frac{1}{3} \left[t^{\frac{3}{2}}\right]_{a}^{b} \\
46+
&= \frac{1}{3} \left[\left(16 + x^2\right)^{\frac{3}{2}}\right]_{0}^{3} \\
47+
&= \frac{1}{3} \left(\left(16 + 3^2\right)^{\frac{3}{2}} - \left(16 + 0^2\right)^{\frac{3}{2}}\right) \\
48+
&= \frac{1}{3} \left((16 + 9)^{\frac{3}{2}} - 16^{\frac{3}{2}}\right) \\
49+
&= \frac{1}{3} \left((25 \cdot 5) - (16 \cdot 4)\right) \\
50+
&= \frac{1}{3} (125 - 64) \\
51+
&= \frac{1}{3} 61 \\
52+
\end{align}
53+
54+
% \item Beräkna integralen
55+
%
56+
% \[
57+
% \int_0^3 \frac{1}{\sqrt{x^2 + 4}} dx
58+
% \]
59+
%
60+
% \item Avgör om den generaliserade integralen
61+
% $\displaystyle \int_0^\infty e^{-x} dx$ är konvergent och
62+
% beräkna den i så fall.
63+
%
64+
% \end{enumerate}
65+
% \end{enumerate}
66+
67+
\end{document}
68+

0 commit comments

Comments
 (0)