|
| 1 | +\documentclass[11pt]{article} |
| 2 | +\usepackage[utf8]{inputenc} |
| 3 | +\usepackage[T1]{fontenc} % Fix weird character |
| 4 | +\usepackage{geometry} |
| 5 | +\usepackage{amsmath} |
| 6 | +\usepackage{amssymb} |
| 7 | +\usepackage{gensymb} |
| 8 | +\usepackage{spalign} |
| 9 | +\usepackage{xfrac} |
| 10 | +\usepackage{parskip} |
| 11 | +\usepackage{float} % figure[H] |
| 12 | +\usepackage[style=ieee,backend=biber]{biblatex} |
| 13 | +\usepackage[breaklinks=true,bookmarks=true,hidelinks]{hyperref} |
| 14 | +\usepackage{tikz} |
| 15 | + |
| 16 | +\geometry{ |
| 17 | + a4paper, |
| 18 | + hmargin=2.54cm, |
| 19 | + tmargin=1.27cm, |
| 20 | + bmargin=1.27cm, |
| 21 | + includeheadfoot |
| 22 | +} |
| 23 | +\setcounter{secnumdepth}{0} % Disable section numbering |
| 24 | + |
| 25 | +\begin{document} |
| 26 | + |
| 27 | +\section{1.a Beräkna integralen} |
| 28 | + |
| 29 | +\[ |
| 30 | + \int_0^3 x \cdot \sqrt{16 + x^2} dx |
| 31 | +\] |
| 32 | + |
| 33 | +Lösning: |
| 34 | + |
| 35 | +\textbf{Variabelbyte (p.284)} |
| 36 | + |
| 37 | +\begin{align} |
| 38 | + \int_0^3 x \cdot \sqrt{16 + x^2} dx &= \left[\begin{aligned} |
| 39 | + t &= 16 + x^2 \\ |
| 40 | + \frac{dt}{dx} &= 2x \ \Leftrightarrow \ \frac{1}{2}dt = x |
| 41 | + \end{aligned}\right] \\ |
| 42 | + &= \int_{a}^{b} \frac{1}{2}\sqrt{t}\ dt \\ |
| 43 | + &= \frac{1}{2} \int_{a}^{b}\sqrt{t}\ dt \\ |
| 44 | + &= \frac{1}{2} \left[\frac{2}{3}t^{\frac{3}{2}}\right]_{a}^{b} |
| 45 | + = \frac{1}{3} \left[t^{\frac{3}{2}}\right]_{a}^{b} \\ |
| 46 | + &= \frac{1}{3} \left[\left(16 + x^2\right)^{\frac{3}{2}}\right]_{0}^{3} \\ |
| 47 | + &= \frac{1}{3} \left(\left(16 + 3^2\right)^{\frac{3}{2}} - \left(16 + 0^2\right)^{\frac{3}{2}}\right) \\ |
| 48 | + &= \frac{1}{3} \left((16 + 9)^{\frac{3}{2}} - 16^{\frac{3}{2}}\right) \\ |
| 49 | + &= \frac{1}{3} \left((25 \cdot 5) - (16 \cdot 4)\right) \\ |
| 50 | + &= \frac{1}{3} (125 - 64) \\ |
| 51 | + &= \frac{1}{3} 61 \\ |
| 52 | +\end{align} |
| 53 | + |
| 54 | +% \item Beräkna integralen |
| 55 | +% |
| 56 | +% \[ |
| 57 | +% \int_0^3 \frac{1}{\sqrt{x^2 + 4}} dx |
| 58 | +% \] |
| 59 | +% |
| 60 | +% \item Avgör om den generaliserade integralen |
| 61 | +% $\displaystyle \int_0^\infty e^{-x} dx$ är konvergent och |
| 62 | +% beräkna den i så fall. |
| 63 | +% |
| 64 | +% \end{enumerate} |
| 65 | +% \end{enumerate} |
| 66 | + |
| 67 | +\end{document} |
| 68 | + |
0 commit comments