-
Notifications
You must be signed in to change notification settings - Fork 693
/
Copy pathtrain_wan_t2v.py
527 lines (463 loc) · 17.5 KB
/
train_wan_t2v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import torch, os, imageio, argparse
from torchvision.transforms import v2
from einops import rearrange
import lightning as pl
import pandas as pd
from diffsynth import WanVideoPipeline, ModelManager, load_state_dict
from peft import LoraConfig, inject_adapter_in_model
import torchvision
from PIL import Image
class TextVideoDataset(torch.utils.data.Dataset):
def __init__(self, base_path, metadata_path, max_num_frames=81, frame_interval=1, num_frames=81, height=480, width=832):
metadata = pd.read_csv(metadata_path)
self.path = [os.path.join(base_path, "train", file_name) for file_name in metadata["file_name"]]
self.text = metadata["text"].to_list()
self.max_num_frames = max_num_frames
self.frame_interval = frame_interval
self.num_frames = num_frames
self.height = height
self.width = width
self.frame_process = v2.Compose([
v2.CenterCrop(size=(height, width)),
v2.Resize(size=(height, width), antialias=True),
v2.ToTensor(),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
def crop_and_resize(self, image):
width, height = image.size
scale = max(self.width / width, self.height / height)
image = torchvision.transforms.functional.resize(
image,
(round(height*scale), round(width*scale)),
interpolation=torchvision.transforms.InterpolationMode.BILINEAR
)
return image
def load_frames_using_imageio(self, file_path, max_num_frames, start_frame_id, interval, num_frames, frame_process):
reader = imageio.get_reader(file_path)
if reader.count_frames() < max_num_frames or reader.count_frames() - 1 < start_frame_id + (num_frames - 1) * interval:
reader.close()
return None
frames = []
for frame_id in range(num_frames):
frame = reader.get_data(start_frame_id + frame_id * interval)
frame = Image.fromarray(frame)
frame = self.crop_and_resize(frame)
frame = frame_process(frame)
frames.append(frame)
reader.close()
frames = torch.stack(frames, dim=0)
frames = rearrange(frames, "T C H W -> C T H W")
return frames
def load_video(self, file_path):
start_frame_id = torch.randint(0, self.max_num_frames - (self.num_frames - 1) * self.frame_interval, (1,))[0]
frames = self.load_frames_using_imageio(file_path, self.max_num_frames, start_frame_id, self.frame_interval, self.num_frames, self.frame_process)
return frames
def is_image(self, file_path):
file_ext_name = file_path.split(".")[-1]
if file_ext_name.lower() in ["jpg", "jpeg", "png", "webp"]:
return True
return False
def load_image(self, file_path):
frame = Image.open(file_path).convert("RGB")
frame = self.crop_and_resize(frame)
frame = self.frame_process(frame)
frame = rearrange(frame, "C H W -> C 1 H W")
return frame
def __getitem__(self, data_id):
text = self.text[data_id]
path = self.path[data_id]
if self.is_image(path):
video = self.load_image(path)
else:
video = self.load_video(path)
data = {"text": text, "video": video, "path": path}
return data
def __len__(self):
return len(self.path)
class LightningModelForDataProcess(pl.LightningModule):
def __init__(self, text_encoder_path, vae_path, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)):
super().__init__()
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
model_manager.load_models([text_encoder_path, vae_path])
self.pipe = WanVideoPipeline.from_model_manager(model_manager)
self.tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
def test_step(self, batch, batch_idx):
text, video, path = batch["text"][0], batch["video"], batch["path"][0]
self.pipe.device = self.device
if video is not None:
prompt_emb = self.pipe.encode_prompt(text)
latents = self.pipe.encode_video(video, **self.tiler_kwargs)[0]
data = {"latents": latents, "prompt_emb": prompt_emb}
torch.save(data, path + ".tensors.pth")
class TensorDataset(torch.utils.data.Dataset):
def __init__(self, base_path, metadata_path, steps_per_epoch):
metadata = pd.read_csv(metadata_path)
self.path = [os.path.join(base_path, "train", file_name) for file_name in metadata["file_name"]]
print(len(self.path), "videos in metadata.")
self.path = [i + ".tensors.pth" for i in self.path if os.path.exists(i + ".tensors.pth")]
print(len(self.path), "tensors cached in metadata.")
assert len(self.path) > 0
self.steps_per_epoch = steps_per_epoch
def __getitem__(self, index):
data_id = torch.randint(0, len(self.path), (1,))[0]
data_id = (data_id + index) % len(self.path) # For fixed seed.
path = self.path[data_id]
data = torch.load(path, weights_only=True, map_location="cpu")
return data
def __len__(self):
return self.steps_per_epoch
class LightningModelForTrain(pl.LightningModule):
def __init__(self, dit_path, learning_rate=1e-5, lora_rank=4, lora_alpha=4, train_architecture="lora", lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming", use_gradient_checkpointing=True, pretrained_lora_path=None):
super().__init__()
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cpu")
model_manager.load_models([dit_path])
self.pipe = WanVideoPipeline.from_model_manager(model_manager)
self.pipe.scheduler.set_timesteps(1000, training=True)
self.freeze_parameters()
if train_architecture == "lora":
self.add_lora_to_model(
self.pipe.denoising_model(),
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_target_modules=lora_target_modules,
init_lora_weights=init_lora_weights,
pretrained_lora_path=pretrained_lora_path,
)
else:
self.pipe.denoising_model().requires_grad_(True)
self.learning_rate = learning_rate
self.use_gradient_checkpointing = use_gradient_checkpointing
def freeze_parameters(self):
# Freeze parameters
self.pipe.requires_grad_(False)
self.pipe.eval()
self.pipe.denoising_model().train()
def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="q,k,v,o,ffn.0,ffn.2", init_lora_weights="kaiming", pretrained_lora_path=None, state_dict_converter=None):
# Add LoRA to UNet
self.lora_alpha = lora_alpha
if init_lora_weights == "kaiming":
init_lora_weights = True
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights=init_lora_weights,
target_modules=lora_target_modules.split(","),
)
model = inject_adapter_in_model(lora_config, model)
for param in model.parameters():
# Upcast LoRA parameters into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# Lora pretrained lora weights
if pretrained_lora_path is not None:
state_dict = load_state_dict(pretrained_lora_path)
if state_dict_converter is not None:
state_dict = state_dict_converter(state_dict)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
all_keys = [i for i, _ in model.named_parameters()]
num_updated_keys = len(all_keys) - len(missing_keys)
num_unexpected_keys = len(unexpected_keys)
print(f"{num_updated_keys} parameters are loaded from {pretrained_lora_path}. {num_unexpected_keys} parameters are unexpected.")
def training_step(self, batch, batch_idx):
# Data
latents = batch["latents"].to(self.device)
prompt_emb = batch["prompt_emb"]
prompt_emb["context"] = [prompt_emb["context"][0][0].to(self.device)]
# Loss
noise = torch.randn_like(latents)
timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,))
timestep = self.pipe.scheduler.timesteps[timestep_id].to(self.device)
extra_input = self.pipe.prepare_extra_input(latents)
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep)
training_target = self.pipe.scheduler.training_target(latents, noise, timestep)
# Compute loss
with torch.amp.autocast(dtype=torch.bfloat16, device_type=torch.device(self.device).type):
noise_pred = self.pipe.denoising_model()(
noisy_latents, timestep=timestep, **prompt_emb, **extra_input,
use_gradient_checkpointing=self.use_gradient_checkpointing
)
loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float())
loss = loss * self.pipe.scheduler.training_weight(timestep)
# Record log
self.log("train_loss", loss, prog_bar=True)
return loss
def configure_optimizers(self):
trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters())
optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate)
return optimizer
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters()))
trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
state_dict = self.pipe.denoising_model().state_dict()
lora_state_dict = {}
for name, param in state_dict.items():
if name in trainable_param_names:
lora_state_dict[name] = param
checkpoint.update(lora_state_dict)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--task",
type=str,
default="data_process",
required=True,
choices=["data_process", "train"],
help="Task. `data_process` or `train`.",
)
parser.add_argument(
"--dataset_path",
type=str,
default=None,
required=True,
help="The path of the Dataset.",
)
parser.add_argument(
"--output_path",
type=str,
default="./",
help="Path to save the model.",
)
parser.add_argument(
"--text_encoder_path",
type=str,
default=None,
help="Path of text encoder.",
)
parser.add_argument(
"--vae_path",
type=str,
default=None,
help="Path of VAE.",
)
parser.add_argument(
"--dit_path",
type=str,
default=None,
help="Path of DiT.",
)
parser.add_argument(
"--tiled",
default=False,
action="store_true",
help="Whether enable tile encode in VAE. This option can reduce VRAM required.",
)
parser.add_argument(
"--tile_size_height",
type=int,
default=34,
help="Tile size (height) in VAE.",
)
parser.add_argument(
"--tile_size_width",
type=int,
default=34,
help="Tile size (width) in VAE.",
)
parser.add_argument(
"--tile_stride_height",
type=int,
default=18,
help="Tile stride (height) in VAE.",
)
parser.add_argument(
"--tile_stride_width",
type=int,
default=16,
help="Tile stride (width) in VAE.",
)
parser.add_argument(
"--steps_per_epoch",
type=int,
default=500,
help="Number of steps per epoch.",
)
parser.add_argument(
"--num_frames",
type=int,
default=81,
help="Number of frames.",
)
parser.add_argument(
"--height",
type=int,
default=480,
help="Image height.",
)
parser.add_argument(
"--width",
type=int,
default=832,
help="Image width.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=1,
help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-5,
help="Learning rate.",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="The number of batches in gradient accumulation.",
)
parser.add_argument(
"--max_epochs",
type=int,
default=1,
help="Number of epochs.",
)
parser.add_argument(
"--lora_target_modules",
type=str,
default="q,k,v,o,ffn.0,ffn.2",
help="Layers with LoRA modules.",
)
parser.add_argument(
"--init_lora_weights",
type=str,
default="kaiming",
choices=["gaussian", "kaiming"],
help="The initializing method of LoRA weight.",
)
parser.add_argument(
"--training_strategy",
type=str,
default="auto",
choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"],
help="Training strategy",
)
parser.add_argument(
"--lora_rank",
type=int,
default=4,
help="The dimension of the LoRA update matrices.",
)
parser.add_argument(
"--lora_alpha",
type=float,
default=4.0,
help="The weight of the LoRA update matrices.",
)
parser.add_argument(
"--use_gradient_checkpointing",
default=False,
action="store_true",
help="Whether to use gradient checkpointing.",
)
parser.add_argument(
"--train_architecture",
type=str,
default="lora",
choices=["lora", "full"],
help="Model structure to train. LoRA training or full training.",
)
parser.add_argument(
"--pretrained_lora_path",
type=str,
default=None,
help="Pretrained LoRA path. Required if the training is resumed.",
)
parser.add_argument(
"--use_swanlab",
default=False,
action="store_true",
help="Whether to use SwanLab logger.",
)
parser.add_argument(
"--swanlab_mode",
default=None,
help="SwanLab mode (cloud or local).",
)
args = parser.parse_args()
return args
def data_process(args):
dataset = TextVideoDataset(
args.dataset_path,
os.path.join(args.dataset_path, "metadata.csv"),
max_num_frames=args.num_frames,
frame_interval=1,
num_frames=args.num_frames,
height=args.height,
width=args.width
)
dataloader = torch.utils.data.DataLoader(
dataset,
shuffle=False,
batch_size=1,
num_workers=args.dataloader_num_workers
)
model = LightningModelForDataProcess(
text_encoder_path=args.text_encoder_path,
vae_path=args.vae_path,
tiled=args.tiled,
tile_size=(args.tile_size_height, args.tile_size_width),
tile_stride=(args.tile_stride_height, args.tile_stride_width),
)
trainer = pl.Trainer(
accelerator="gpu",
devices="auto",
default_root_dir=args.output_path,
)
trainer.test(model, dataloader)
def train(args):
dataset = TensorDataset(
args.dataset_path,
os.path.join(args.dataset_path, "metadata.csv"),
steps_per_epoch=args.steps_per_epoch,
)
dataloader = torch.utils.data.DataLoader(
dataset,
shuffle=True,
batch_size=1,
num_workers=args.dataloader_num_workers
)
model = LightningModelForTrain(
dit_path=args.dit_path,
learning_rate=args.learning_rate,
train_architecture=args.train_architecture,
lora_rank=args.lora_rank,
lora_alpha=args.lora_alpha,
lora_target_modules=args.lora_target_modules,
init_lora_weights=args.init_lora_weights,
use_gradient_checkpointing=args.use_gradient_checkpointing,
pretrained_lora_path=args.pretrained_lora_path,
)
if args.use_swanlab:
from swanlab.integration.pytorch_lightning import SwanLabLogger
swanlab_config = {"UPPERFRAMEWORK": "DiffSynth-Studio"}
swanlab_config.update(vars(args))
swanlab_logger = SwanLabLogger(
project="wan",
name="wan",
config=swanlab_config,
mode=args.swanlab_mode,
logdir=args.output_path,
)
logger = [swanlab_logger]
else:
logger = None
trainer = pl.Trainer(
max_epochs=args.max_epochs,
accelerator="gpu",
devices="auto",
strategy=args.training_strategy,
default_root_dir=args.output_path,
accumulate_grad_batches=args.accumulate_grad_batches,
callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)],
logger=logger,
)
trainer.fit(model, dataloader)
if __name__ == '__main__':
args = parse_args()
if args.task == "data_process":
data_process(args)
elif args.task == "train":
train(args)