-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistics.py
220 lines (202 loc) · 7.11 KB
/
statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
compute different metrics to quantify different properties of the network
"""
import sys
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from helpers import pairwise_corr, revised_local_variation, avg_firing_rate, fano_factor
from params import *
"""
parse the parameters and initalise data structures
"""
runnum = 5 # default num. of trial repetition is 5
network_mode = sys.argv[1] # input should be either "noise", "random" or "topo"
sim_time = eval(sys.argv[2])
# delay profile
delay_mode_intra = sys.argv[3]
delay_mode_inter = sys.argv[4]
delay_intra_param = eval(sys.argv[5])
delay_inter_param = eval(sys.argv[6])
# skipping connections profile
if len(sys.argv) > 7:
skip_double = bool(eval(sys.argv[7])) # True if double connection is activated
delay_skip_param = eval(sys.argv[8]) # increasing delays
skip_weights = eval(
sys.argv[9]
) # might want to use decreasing weights, as a factor
measures = np.zeros((runnum, module_depth, 4)) # four different metrics
"""
raster plot here because I don't want to load spike data in plot.py
"""
# for some reasons I cannot import this function from another script, so just define it here
def plot_raster(
filename, spike_times, spike_senders, layer, num_to_plot=100, plot_time=(6000, 8000)
):
"""
make a raster plot with @num_to_plot neurons
:filename: str, name of the file to save
:param spike_times: list, nest.GetStatus(spike_detector, ["event"])[0]["times"]
:param spike_senders: list, nest.GetStatus(spike_detector, ["event"])[0]["senders"]
:param num_to_plot: int, num of neurons to plot, default = 1000
:param plot_time: list, interval of time to plot the spikes
:return: None
"""
fig, (a0, a1) = plt.subplots(
nrows=2, ncols=1, figsize=(8, 5), gridspec_kw={"height_ratios": [3, 1]}
)
mask_time = (spike_times <= plot_time[1]) & (
spike_times >= plot_time[0]
) # choose time to plot
rand_choice = np.random.randint(0 + N * layer, N * (layer + 1), num_to_plot)
mask_ids = np.isin(spike_senders, rand_choice) # choose neurons to plot randomly
a0.scatter(
spike_times[mask_time & mask_ids],
spike_senders[mask_time & mask_ids],
s=0.1,
c="r",
)
a1.set(xlabel="time (ms)")
bin_size = 5 # in msec
bins = np.arange(plot_time[0], plot_time[1] + 0.00066, bin_size)
heights, edges = np.histogram(spike_times, bins)
normed = (heights / N) * (1000 / bin_size)
a1.bar(bins[:-1], normed, width=10.0, color="orange", align="edge")
plt.savefig(filename, bbox_to_inches="tight")
"""
The main loop
"""
for runindex in range(runnum):
for mod_i in range(module_depth):
# load the spikes data
if len(sys.argv) > 7:
times = np.load(
PATH
+ "spiketimes_run={}_{}_intra={}{}_inter={}{}_skip_double={}_d={}_w={}.npy".format(
runindex,
network_mode,
delay_mode_intra,
delay_intra_param,
delay_mode_inter,
delay_inter_param,
skip_double,
delay_skip_param,
skip_weights,
),
allow_pickle=True,
)[mod_i]
gids = np.load(
PATH
+ "spikesenders_run={}_{}_intra={}{}_inter={}{}_skip_double={}_d={}_w={}.npy".format(
runindex,
network_mode,
delay_mode_intra,
delay_intra_param,
delay_mode_inter,
delay_inter_param,
skip_double,
delay_skip_param,
skip_weights,
),
allow_pickle=True,
)[mod_i]
else:
times = np.load(
PATH
+ "spiketimes_run={}_{}_intra={}{}_inter={}{}.npy".format(
runindex,
network_mode,
delay_mode_intra,
delay_intra_param,
delay_mode_inter,
delay_inter_param,
),
allow_pickle=True,
)[mod_i]
gids = np.load(
PATH
+ "spikesenders_run={}_{}_intra={}{}_inter={}{}.npy".format(
runindex,
network_mode,
delay_mode_intra,
delay_intra_param,
delay_mode_inter,
delay_inter_param,
),
allow_pickle=True,
)[mod_i]
# raster plot
if mod_i == 2:
if len(sys.argv) > 7:
file = os.getcwd() + "/figs/rasterplot/{}_intra={}{}_inter={}{}_skip_double={}_d={}_w={}.pdf".format(
network_mode,
delay_mode_intra,
delay_intra_param,
delay_mode_inter,
delay_inter_param,
skip_double,
delay_skip_param,
skip_weights,
)
else:
file = os.getcwd() + "/figs/rasterplot/{}_intra={}{}_inter={}{}.pdf".format(
network_mode,
delay_mode_intra,
delay_intra_param,
delay_mode_inter,
delay_inter_param,
)
plot_raster(
filename=file,
spike_times=times,
spike_senders=gids,
layer=mod_i,
num_to_plot=500,
)
# compute the measures
measures[runindex, mod_i, :] = [
pairwise_corr(spike_times=times, spike_senders=gids, record_time=sim_time),
revised_local_variation(spike_times=times, spike_senders=gids),
avg_firing_rate(spike_senders=gids, record_time=sim_time, N=N),
fano_factor(spike_times=times, record_time=sim_time, N=N),
]
print("measures are computed now: ", time.process_time())
"""
save the summary data to the file
"""
m, n, r = measures.shape
out_arr = np.column_stack(
(np.tile(np.arange(n), m), measures.reshape(m * n, -1))
) # reshaping array to dataframe
df_measure = pd.DataFrame(
out_arr,
columns=["module index", "synchrony", "irregularity", "firing rate", "variability"],
)
df_measure["network type"] = network_mode
# save the data
if len(sys.argv) > 7:
df_measure.to_csv(
"measures_{}_intra={}{}_inter={}{}_skip_double={}_d={}_w={}.csv".format(
network_mode,
delay_mode_intra,
delay_intra_param,
delay_mode_inter,
delay_inter_param,
skip_double,
delay_skip_param,
skip_weights,
),
index=False,
)
else:
df_measure.to_csv(
"measures_{}_intra={}{}_inter={}{}.csv".format(
network_mode,
delay_mode_intra,
delay_intra_param,
delay_mode_inter,
delay_inter_param,
),
index=False,
)