-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLeetcode_1425.Constrained Subsequence Sum.py
95 lines (62 loc) · 1.32 KB
/
Leetcode_1425.Constrained Subsequence Sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Constrained Subsequence Sum - Leetcode 1425
def column_sum(lst):
res=[]
for i in range(0,len(lst[0])):
s=0
for j in range(0,len(lst[i])):
s+=lst[j][i]
res.append(s)
return res
def transpose(l1, l2):
l2 =[[row[i] for row in l1] for i in range(len(l1[0]))]
return l2
def do(A,k):
if k == 1:
return max(A)
cn = 0
cc = 0
for i in range(len(A)):
cc += 1
if A[i] > 0 :
cn+=1
#print(cnt)
if cn == 1 and cc == len(A):
return A[i]
k -=1
AC = [[0] * len(A) for i in range(len(A))]
#for jj in range(len(AC) // len(A) ): # or
for jj in range(1):
for i in range(len(A)):
for j in range(len(A)):
AC[i+ len(AC) * jj][j] = A[j]
for i in range(len(A)):
for kk in range(k):
cnt = 0
for move in range(kk + i +1):
if move < len(A) :
AC[ i ][move] = 0
cnt+=1
for i in range(1,len(AC)):
for j in range(0,i):
AC[i][j] = A[j]
#print(AC)
RR = len(A) - k + 1
AC = AC[0:RR]
l2 = []
AC = transpose(AC, l2)
#print(AC)
return max(column_sum(AC) )
A = [10,2,-10,5,20]
nums1 = [-1,-2,-3]
kk = 1
nums2 = [10,-2,-10,-5,20]
k = 2
print( do(A, k) )
print()
print( do(nums1, kk) )
print()
print( do(nums2, k) )
print()
numm=[-1000,-2000,-3000,-4000,2] # answer is 2 working on a shorter, better faster solution
ki=2
print( do(numm, ki) )