-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
116 lines (99 loc) · 4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from dataset import DataModule
from model import PetFinderModel
from callbacks import LogPredictionsCallback
from tqdm import tqdm
from utils import in_colab
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping, LearningRateMonitor
from pytorch_lightning.loggers import WandbLogger
import pandas as pd
import numpy as np
import torch
import torchvision.transforms as T
import pytorch_lightning as pl
import argparse
import albumentations as A
import wandb
import gc
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--model_name', type=str, default='efficientnet_b0')
parser.add_argument('--fold', type=int, default=-1)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--wd', type=float, default=1e-4)
parser.add_argument('--img_size_x', type=int, default=224)
parser.add_argument('--img_size_y', type=int, default=224)
parser.add_argument('--drop_rate', type=float, default=0.)
parser.add_argument('--drop_path_rate', type=float, default=0.)
parser.add_argument('--mixup_alpha', type=float, default=0.5)
parser.add_argument('--cropped_imgs', action='store_true', default=False)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
parser.add_argument('--grad_clip_val', type=float, default=1.0)
parser.add_argument('--interpolation', type=str, default='bilinear')
parser.add_argument('--max_epochs', type=int, default=5)
parser.add_argument('--seed', type=int, default=34)
args = parser.parse_args()
pl.seed_everything(args.seed);
wandb.login()
data_dir = 'data'
img_path = 'crop' if args.cropped_imgs else 'train'
train_df = pd.read_csv(f'{data_dir}/train_folds_10.csv')
train_df['file_path'] = f'{data_dir}/{img_path}/' + train_df['Id'] + '.jpg'
hparams = {
'model_name': args.model_name,
'epochs': args.max_epochs,
'lr': args.lr,
'wd': args.wd,
'accumulate_grad_batches': args.accumulate_grad_batches,
'classification': True,
'drop_rate': args.drop_rate,
'drop_path_rate': args.drop_path_rate,
'mixup': True,
'mixup_p': 0.5,
'mixup_alpha': args.mixup_alpha,
'cutmix': False,
'cutmix_p': 0.5,
'cutmix_alpha': 0.5
}
for i in range(10):
if args.fold != -1 and i != args.fold:
continue
train_filter = train_df['fold'] != i
val_filter = train_df['fold'] == i
dm = DataModule(
train_df, img_size=(args.img_size_x, args.img_size_y),
train_filter=train_filter, val_filter=val_filter,
batch_size=args.batch_size,
)
model = PetFinderModel(**hparams, pretrained=True)
ckpt_dirpath = '/media/mten/storage/kaggle/petfinder-pawpularity-score/ckpts/' if not in_colab() else '/content/drive/MyDrive/Kaggle/petfinder-pawpularity/ckpts/'
ckpt = ModelCheckpoint(
dirpath=ckpt_dirpath,
monitor='val_rmse_loss', mode='min',
filename=f'{args.model_name}-seed-{args.seed}-{args.name}_ten_fold-fold-{i}-{{val_bce_loss:.4f}}-{{val_rmse_loss:.4f}}'
)
early_stop = EarlyStopping('val_rmse_loss', mode='min', patience=6)
wandb_logger = WandbLogger(project='petfinder-pawpularity-score', log_model=False, name=f'{args.model_name}-seed-{args.seed}-{args.name}_ten_fold-fold-{i}')
wandb_logger.watch(model, log='all')
trainer = pl.Trainer(
gpus=-1, benchmark=True,
callbacks=[LearningRateMonitor(), ckpt, early_stop],
logger=wandb_logger,
enable_checkpointing=True,
accumulate_grad_batches=hparams['accumulate_grad_batches'],
deterministic=True,
gradient_clip_val=args.grad_clip_val,
precision=16,
val_check_interval=0.25,
max_epochs=args.max_epochs,
)
trainer.fit(model, datamodule=dm)
wandb.run.summary['best_bce_loss'] = model.best_bce_loss
wandb.run.summary['best_rmse_loss'] = model.best_rmse_loss
wandb.run.summary['batch_size'] = args.batch_size
wandb.finish()
del model
del dm
del trainer
gc.collect()
torch.cuda.empty_cache()