Skip to content

tool for downloading YouTube videos, extracting audio, cleaning noise, and splitting into chunks. Ideal for creating audio datasets for TTS models

License

Notifications You must be signed in to change notification settings

nathanrish/youtube_audio_processor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YouTube Audio Processor

YouTube Audio Processor is a tool designed for downloading YouTube videos, extracting and cleaning audio, and splitting the audio into chunks. It's useful for creating high-quality audio datasets for training Text-to-Speech (TTS) models and other audio-based applications.

Features

  • Download Audio: Fetch audio from YouTube videos using yt-dlp.
  • Noise Reduction: Remove background noise with noisereduce.
  • Audio Processing: Analyze and process audio using librosa and pydub.
  • Audio Chunking: Split audio into smaller chunks.

Project Structure

youtube_audio_processor/
│
├── main.py               # Main script to run the process
├── requirements.txt      # Dependencies
├── .gitignore            # Git ignore rules
├── .env                  # Environment variables (optional)
│
├── utils/                # Utility scripts
│   ├── downloader.py     # For downloading audio from YouTube
│   ├── processor.py      # For cleaning audio
│   └── chunker.py        # For splitting audio into chunks
│
└── audio_chunks/         # Directory for saving audio chunks

Installation

  1. Clone the Repository

    git clone https://github.com/nathanrish/youtube_audio_processor.git
    cd youtube_audio_processor
  2. Set Up the Environment

    Create and activate a virtual environment (optional but recommended):

    conda create --name youtube_audio_processor python=3.8
    conda activate youtube_audio_processor
  3. Install Dependencies

    pip install -r requirements.txt
  4. Install ffmpeg

    Note: ffmpeg is required for audio processing. Make sure to install it separately:

    On macOS:

    brew install ffmpeg

    On Ubuntu/Linux:

    sudo apt install ffmpeg

    On Windows: Download from ffmpeg.org and add it to your system PATH.

Configuration

Create a .env file in the root directory if you need to use environment variables. Example configuration:

# .env file
DOWNLOAD_PATH=downloads
OUTPUT_DIR=audio_chunks
CHUNK_LENGTH_MS=5000

Usage

  1. Run the Main Script

    Execute the main.py script. You will be prompted to enter the YouTube video URL:

    python main.py
  2. Enter the YouTube URL

    When prompted, provide the URL of the YouTube video you want to process:

    Enter the YouTube video URL: https://youtu.be/your_video_id
    
  3. Results

    • The audio will be downloaded and saved in the DOWNLOAD_PATH.
    • The audio will be cleaned and split into chunks.
    • The processed chunks will be saved in the OUTPUT_DIR.

Code Examples

Downloader (utils/downloader.py):

import os
from yt_dlp import YoutubeDL

def download_youtube_video(url, download_path='downloads'):
    ydl_opts = {
        'format': 'bestaudio/best',
        'outtmpl': os.path.join(download_path, '%(title)s.%(ext)s'),
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'wav',
            'preferredquality': '192',
        }],
    }
    with YoutubeDL(ydl_opts) as ydl:
        info_dict = ydl.extract_info(url, download=True)
        filename = ydl.prepare_filename(info_dict)
        return filename.replace('.webm', '.wav').replace('.mp4', '.wav')

Processor (utils/processor.py):

import noisereduce as nr
import librosa

def clean_audio(file_path):
    audio, sr = librosa.load(file_path, sr=None)
    cleaned_audio = nr.reduce_noise(y=audio, sr=sr)
    return cleaned_audio, sr

Chunker (utils/chunker.py):

import os
import soundfile as sf

def chunk_audio(audio, sr, chunk_length_ms=5000):
    chunk_length = int(sr * (chunk_length_ms / 1000))
    return [audio[i:i + chunk_length] for i in range(0, len(audio), chunk_length)]

def save_chunks(chunks, sr, output_dir='audio_chunks'):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    for i, chunk in enumerate(chunks):
        chunk_file = os.path.join(output_dir, f'chunk_{i}.wav')
        sf.write(chunk_file, chunk, sr)

Troubleshooting

  • HTTP Error 400: Check if the URL is correct and ensure yt-dlp is up to date.
  • Missing Libraries: Make sure all dependencies are installed by running pip install -r requirements.txt.

Contributing

Contributions are welcome! Fork the repository and submit pull requests. For major changes, open an issue to discuss the modifications before creating a PR.

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

tool for downloading YouTube videos, extracting audio, cleaning noise, and splitting into chunks. Ideal for creating audio datasets for TTS models

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages