Skip to content

Commit a660336

Browse files
committed
Replace scipy.misc.face with scipy.datasets.face.
1 parent a870f27 commit a660336

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

content/tutorial-svd.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -35,12 +35,12 @@ After this tutorial, you should be able to:
3535

3636
## Content
3737

38-
In this tutorial, we will use a [matrix decomposition](https://en.wikipedia.org/wiki/Matrix_decomposition) from linear algebra, the Singular Value Decomposition, to generate a compressed approximation of an image. We'll use the `face` image from the [scipy.misc](https://docs.scipy.org/doc/scipy/reference/misc.html#module-scipy.misc) module:
38+
In this tutorial, we will use a [matrix decomposition](https://en.wikipedia.org/wiki/Matrix_decomposition) from linear algebra, the Singular Value Decomposition, to generate a compressed approximation of an image. We'll use the `face` image from the [scipy.datasets](https://docs.scipy.org/doc/scipy/reference/datasets.html) module:
3939

4040
```{code-cell}
41-
from scipy import misc
41+
from scipy import datasets
4242
43-
img = misc.face()
43+
img = datasets.face()
4444
```
4545

4646
**Note**: If you prefer, you can use your own image as you work through this tutorial. In order to transform your image into a NumPy array that can be manipulated, you can use the `imread` function from the [matplotlib.pyplot](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot) submodule. Alternatively, you can use the [imageio.imread](https://imageio.readthedocs.io/en/stable/userapi.html#imageio.imread) function from the `imageio` library. Be aware that if you use your own image, you'll likely need to adapt the steps below. For more information on how images are treated when converted to NumPy arrays, see [A crash course on NumPy for images](https://scikit-image.org/docs/stable/user_guide/numpy_images.html) from the `scikit-image` documentation.
@@ -91,7 +91,7 @@ img[:, :, 0]
9191
```
9292

9393
From the output above, we can see that every value in `img[:, :, 0]` is an integer value between 0 and 255, representing the level of red in each corresponding image pixel (keep in mind that this might be different if you
94-
use your own image instead of [scipy.misc.face](https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.face.html#scipy.misc.face)).
94+
use your own image instead of [scipy.datasets.face](https://docs.scipy.org/doc/scipy/reference/generated/scipy.datasets.face.html)).
9595

9696
As expected, this is a 768x1024 matrix:
9797

0 commit comments

Comments
 (0)