|
| 1 | +import heapq |
| 2 | +import re |
| 3 | + |
| 4 | +from datatrove.data import Document |
| 5 | +from datatrove.pipeline.filters.base_filter import BaseFilter |
| 6 | +from datatrove.pipeline.writers.disk_base import DiskWriter |
| 7 | + |
| 8 | + |
| 9 | +POLICY_SUBSTRINGS = { |
| 10 | + "german": [ |
| 11 | + "benutzungsbedingungen", |
| 12 | + "nutzungsbedingungen", |
| 13 | + "nutzungsbestimmungen", |
| 14 | + "datenschutzerklärung", |
| 15 | + "datenschutzbestimmungen", |
| 16 | + "datenschutzrichtlinie", |
| 17 | + "cookie-richtlinie", |
| 18 | + "verwendet cookies", |
| 19 | + "benutzt cookies", |
| 20 | + "cookies verwendet", |
| 21 | + "verwendung von cookies", |
| 22 | + "einsatz von cookies", |
| 23 | + "nutzung von cookies", |
| 24 | + "verwenden cookies", |
| 25 | + "benutzen cookies" |
| 26 | + ] |
| 27 | +} |
| 28 | + |
| 29 | + |
| 30 | + |
| 31 | + |
| 32 | +class MultilingualPolicyFilter(BaseFilter): |
| 33 | + """Applies C4 Policy filter for other languages |
| 34 | +
|
| 35 | + - Remove lines with cookies and terms of use keywords |
| 36 | +
|
| 37 | + Reference implementation: https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/text/c4_utils.py#L197 |
| 38 | + Args: |
| 39 | + exclusion_writer: optionally pass in a writer that will save the dropped documents |
| 40 | + language: used to determine policy strings and for language specific punkt tokenizer from nltk |
| 41 | + min_num_sentences: remove documents that do not have at least this number of sentences (after line filtering). |
| 42 | + set to -1 to disable |
| 43 | + """ |
| 44 | + |
| 45 | + name = "⛰ C4 Quality" |
| 46 | + _requires_dependencies = ["nltk"] |
| 47 | + |
| 48 | + def __init__( |
| 49 | + self, |
| 50 | + exclusion_writer: DiskWriter = None, |
| 51 | + language: str = "german", |
| 52 | + min_num_sentences: int = 5, # set to -1 to disableQ |
| 53 | + ): |
| 54 | + super().__init__(exclusion_writer) |
| 55 | + self.language = language |
| 56 | + |
| 57 | + self.min_num_sentences = min_num_sentences |
| 58 | + |
| 59 | + def filter(self, doc: Document) -> bool | tuple[bool, str]: |
| 60 | + from nltk.tokenize import sent_tokenize |
| 61 | + |
| 62 | + lines = ( |
| 63 | + doc.text.splitlines() |
| 64 | + if self.split_paragraph |
| 65 | + else sent_tokenize(doc.text, language=self.language) |
| 66 | + ) |
| 67 | + |
| 68 | + num_sentences = 0 |
| 69 | + kept_lines = [] |
| 70 | + |
| 71 | + for line in lines: |
| 72 | + line = line.strip() |
| 73 | + words = line.split() |
| 74 | + self.stat_update("line-total") |
| 75 | + # check line has too long word |
| 76 | + line_l = line.lower() |
| 77 | + # lorem ipsum |
| 78 | + if any(p in line_l for p in POLICY_SUBSTRINGS[self.language]): |
| 79 | + self.stat_update("line-filter-policy") |
| 80 | + continue |
| 81 | + num_sentences += len(sent_tokenize(line, language=self.tokenizer_language)) if self.split_paragraph else 1 |
| 82 | + kept_lines.append(line) |
| 83 | + self.stat_update("line-kept") |
| 84 | + if num_sentences < self.min_num_sentences: |
| 85 | + return False, "too_few_sentences" |
| 86 | + |
| 87 | + doc.text = ("\n" if self.split_paragraph else " ").join(kept_lines).strip() |
| 88 | + return True |
| 89 | + |
| 90 | + |
| 91 | +class C4ParagraphFilter(BaseFilter): |
| 92 | + """Applies paragraph filtering from mC4 |
| 93 | +
|
| 94 | + https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/text/c4_utils.py#L551 |
| 95 | + """ |
| 96 | + |
| 97 | + name = "⛰ C4 Paragraph" |
| 98 | + |
| 99 | + def __init__(self, exclusion_writer: DiskWriter = None): |
| 100 | + super().__init__(exclusion_writer) |
| 101 | + |
| 102 | + self.min_paragraphs = 3 |
| 103 | + self.min_paragraph_len = 200 |
| 104 | + self.line_delimiter = "\n" |
| 105 | + |
| 106 | + def paragraph_filter(self, page): |
| 107 | + """Returns False iff a page has too few or too short paragraphs.""" |
| 108 | + lines = page.split(self.line_delimiter) |
| 109 | + # Filter out docs that don't have at least three "paragraphs" |
| 110 | + # (lines >= `min_paragraph_len` chars). |
| 111 | + if ( |
| 112 | + len(lines) < self.min_paragraphs |
| 113 | + or min(heapq.nlargest(3, [len(line) for line in lines])) < self.min_paragraph_len |
| 114 | + ): |
| 115 | + return False |
| 116 | + return True |
| 117 | + |
| 118 | + def filter(self, doc: Document) -> bool | tuple[bool, str]: |
| 119 | + if not self.paragraph_filter(doc.text): |
| 120 | + return False, f"< {self.min_paragraphs} paragraphs" |
| 121 | + return True |
0 commit comments