-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathscore_manager.py
284 lines (245 loc) Β· 11.2 KB
/
score_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import bittensor as bt
import copy
import numpy as np
import threading
from io import StringIO
from rich.console import Console
from rich.table import Table
from typing import List
from webgenie.base.neuron import BaseNeuron
from webgenie.challenges.challenge import Challenge, RESERVED_WEIGHTS
from webgenie.constants import (
CONSIDERING_SESSION_COUNTS,
__STATE_VERSION__,
WORK_DIR,
MAX_UNANSWERED_TASKS
)
from webgenie.helpers.weights import save_file_to_wandb
class ScoreManager:
def __init__(self, neuron: BaseNeuron):
self.neuron = neuron
self.state_path = self.neuron.config.neuron.full_path + "/state.npz"
self.lock = threading.Lock()
self.hotkeys = copy.deepcopy(self.neuron.metagraph.hotkeys)
self.current_session = -1
self.number_of_tasks = 0
self.total_scores = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
self.last_set_weights_session = -1
self.session_results = {}
def load_scores(self):
try:
bt.logging.info(f"Loading scores from {self.state_path}")
data = np.load(self.state_path, allow_pickle=True)
self.hotkeys = data.get(
f"hotkeys",
copy.deepcopy(self.neuron.metagraph.hotkeys)
)
self.current_session = data.get(
f"current_session",
-1
)
self.number_of_tasks = data.get(
f"number_of_tasks",
0
)
self.last_set_weights_session = data.get(
f"last_set_weights_session",
-1
)
self.solved_tasks = data.get(
f"solved_tasks",
np.zeros(self.neuron.metagraph.n, dtype=np.float32),
)
self.total_scores = data.get(
f"total_scores_{__STATE_VERSION__}",
np.zeros(self.neuron.metagraph.n, dtype=np.float32),
)
self.session_results = dict(
data.get("session_results", np.array({})).item()
)
except Exception as e:
bt.logging.error(f"Error loading state: {e}")
self.hotkeys = copy.deepcopy(self.neuron.metagraph.hotkeys)
self.current_session = -1
self.solved_tasks = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
self.total_scores = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
self.last_set_weights_session = -1
self.number_of_tasks = 0
self.session_results = {}
def save_scores(self):
try:
bt.logging.info(f"Saving scores to {self.state_path}")
np.savez(
self.state_path,
hotkeys=self.hotkeys,
**{f"current_session": self.current_session},
last_set_weights_session=self.last_set_weights_session,
number_of_tasks=self.number_of_tasks,
solved_tasks=self.solved_tasks,
**{f"total_scores_{__STATE_VERSION__}": self.total_scores},
session_results= self.session_results,
allow_pickle=True,
)
except Exception as e:
bt.logging.error(f"Error saving state: {e}")
def set_new_hotkeys(self, new_hotkeys: List[str]):
bt.logging.info(
"Hotkeys updated, re-syncing scores"
)
# Zero out all hotkeys that have been replaced.
for uid, hotkey in enumerate(self.hotkeys):
if hotkey != new_hotkeys[uid]:
self.total_scores[uid] = 0
self.solved_tasks[uid] = 0
# Check to see if the metagraph has changed size.
# If so, we need to add new hotkeys and moving averages.
if len(self.hotkeys) < len(new_hotkeys):
new_total_scores = np.zeros((len(new_hotkeys)))
min_len = min(len(self.hotkeys), len(self.total_scores))
new_total_scores[:min_len] = self.total_scores[:min_len]
self.total_scores = new_total_scores
new_solved_tasks = np.zeros((len(new_hotkeys)))
min_len = min(len(self.hotkeys), len(self.solved_tasks))
new_solved_tasks[:min_len] = self.solved_tasks[:min_len]
self.solved_tasks = new_solved_tasks
# Update the hotkeys.
self.hotkeys = copy.deepcopy(new_hotkeys)
self.save_scores()
def update_scores(self, rewards: np.ndarray, uids: List[int], challenge: Challenge):
bt.logging.info("Updating scores")
session = challenge.session
competition_type = challenge.competition_type
if self.current_session != session:
# This is a new session, reset the scores and winners.
self.current_session = session
self.number_of_tasks = 0
self.solved_tasks = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
self.total_scores = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
# Update accumulated scores and track best performer
self.number_of_tasks += 1
self.total_scores[uids] += rewards
self.solved_tasks[uids] += 1
winner = self.get_winner(
self.total_scores,
self.solved_tasks,
self.number_of_tasks,
)
current_session_results = {
"session": session,
"competition_type": competition_type,
"number_of_tasks": self.number_of_tasks,
"winner": winner,
"solved_tasks": self.solved_tasks,
"scores": self.total_scores,
}
self.session_results[session] = current_session_results
for session_number in list(self.session_results.keys()):
if session_number < session - CONSIDERING_SESSION_COUNTS * 2:
self.session_results.pop(session_number)
self.save_scores()
console = Console()
self.print_session_result(session, console)
def is_blacklisted(self, uid: int):
blacklisted_coldkeys = ["5G9yTkkDd39chZiyvKwNsQvzqbbPgdiLtdb4sCR743f4MuRY"]
return self.neuron.metagraph.axons[uid].coldkey in blacklisted_coldkeys
def get_winner(self, total_scores: np.ndarray, solved_tasks: np.ndarray, number_of_tasks: int):
avg_scores = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
for uid in range(self.neuron.metagraph.n):
if self.is_blacklisted(uid):
continue
avg_scores[uid] = total_scores[uid] / number_of_tasks
# if solved_tasks[uid] >= max(1, number_of_tasks - MAX_UNANSWERED_TASKS):
# avg_scores[uid] = total_scores[uid] / solved_tasks[uid]
# else:
# avg_scores[uid] = 0
winner = np.argmax(avg_scores) if max(avg_scores) > 0 else -1
return winner
def get_scores(self, session_upto: int):
scores = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
for session_number in self.session_results:
if (session_number <= session_upto - CONSIDERING_SESSION_COUNTS or
session_number > session_upto):
continue
try:
winner = self.session_results[session_number]["winner"]
competition_type = self.session_results[session_number]["competition_type"]
if winner == -1:
continue
scores[winner] += RESERVED_WEIGHTS[competition_type]
except Exception as e:
bt.logging.warning(f"Error getting scores: {e}")
return scores
# scores = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
# tiny_weight = 1 / 128
# big_weight = 1.0
# for session_number in self.session_results:
# if (session_number <= session_upto - CONSIDERING_SESSION_COUNTS or
# session_number > session_upto):
# continue
# winner = self.session_results[session_number]["winner"]
# if winner == -1:
# continue
# if session_number == session_upto:
# scores[winner] += big_weight
# else:
# scores[winner] += tiny_weight
# return scores
# if session_upto in self.session_results:
# scores = self.session_results[session_upto]["scores"]
# else:
# scores = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
# return np.power(scores, 9)
def print_session_result(self, session_upto: int, console: Console):
try:
session_result = self.session_results[session_upto]
number_of_tasks = session_result["number_of_tasks"]
session = session_result["session"]
competition_type = session_result["competition_type"]
winner = session_result["winner"]
scores = session_result["scores"]
solved_tasks = session_result["solved_tasks"]
avg_scores = np.zeros(self.neuron.metagraph.n, dtype=np.float32)
for uid in range(self.neuron.metagraph.n):
if solved_tasks[uid] >= max(1, number_of_tasks - MAX_UNANSWERED_TASKS):
avg_scores[uid] = scores[uid] / solved_tasks[uid]
else:
avg_scores[uid] = 0
total_scores_table = Table(
title=(
f"π Total Scores Summary\n"
f"π Session: #{session}\n"
f"π Number of Tasks: #{number_of_tasks}\n"
f"π Competition: {competition_type}\n"
f"π Winner: #{winner}\n"
),
show_header=True,
header_style="bold magenta",
title_style="bold blue",
border_style="blue"
)
total_scores_table.add_column("Rank", justify="right", style="red", header_style="bold red")
total_scores_table.add_column("UID", justify="right", style="cyan", header_style="bold cyan")
total_scores_table.add_column("Average Score", justify="right", style="yellow")
scored_uids = [(uid, avg_scores[uid]) for uid in range(self.neuron.metagraph.n) if avg_scores[uid] > 0]
scored_uids.sort(key=lambda x: x[1], reverse=True)
for rank, (uid, score) in enumerate(scored_uids):
total_scores_table.add_row(
str(rank + 1),
str(uid),
f"{score:.4f}",
)
console.print(total_scores_table)
except Exception as e:
bt.logging.warning(f"Error printing session result: {e}")
def save_session_result_to_file(self, session_upto: int):
try:
log_file_name = f"{WORK_DIR}/session_{session_upto}.txt"
console = Console(file=StringIO(), force_terminal=False)
self.print_session_result(session_upto, console)
table_str = console.file.getvalue()
with open(log_file_name, "w") as f:
f.write(table_str)
save_file_to_wandb(log_file_name)
except Exception as e:
bt.logging.error(f"Error saving session result to file: {e}")
raise e