Skip to content

Commit

Permalink
Finalise une première version
Browse files Browse the repository at this point in the history
  • Loading branch information
mbaudin47 committed May 23, 2024
1 parent f8f2f17 commit e374c82
Show file tree
Hide file tree
Showing 4 changed files with 82 additions and 67 deletions.
76 changes: 17 additions & 59 deletions calibration2024/calibration2024.bib
Original file line number Diff line number Diff line change
@@ -1,19 +1,12 @@
@inproceedings{Baudin2021,
title={Linear algebra of linear and nonlinear bayesian calibration},
title={Linear algebra of linear and nonlinear {Bayesian} calibration},
author={Baudin, Michaël and Lebrun, Régis},
year={2021},
booktitle = {UNCECOMP 2021},
pages = {339--353},
organization = "4th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou (eds.) Streamed from Athens, Greece, 28-30 June 2021",
}
@book{BinghamFry2010,
title={Regression, Linear Models in Statistics},
author={N. H. Bingham and John M. Fry},
series={Springer Undergraduate Mathematics Series},
year={2010},
publisher={Springer}
}
@Book{Bjorck1996,
author = {Ake Björck},
Expand All @@ -22,14 +15,6 @@ @Book{Bjorck1996
year = {1996},
}
@book{BinghamFry,
title={Regression, Linear Models in Statistics},
author={N. H. Bingham and John M. Fry},
series={Springer Undergraduate Mathematics Series},
year={2010},
publisher={Springer}
}
@INPROCEEDINGS{Hansen00thelcurve,
author = {P. C. Hansen},
title = {The {L}-Curve and its Use in the Numerical Treatment of Inverse Problems},
Expand Down Expand Up @@ -64,20 +49,6 @@ @book{Evensen2009
publisher = {SIAM}
}
@book{Sen1990,
author = "Ashish Sen and Muni Srivastava",
title = "Regression analysis",
year = "1990",
publisher = "Springer",
}
@book{Draper1988,
author = "Norman R. Draper and Harry Smith",
title = "Applied Regression Analysis, Third Edition",
year = "1988",
publisher = "John Wiley \& Sons, Inc.",
}
@book{Tarantola2005,
author = "Albert Tarantola",
title = "Inverse problem theory",
Expand All @@ -92,14 +63,6 @@ @book{Asch2016
publisher={SIAM}
}
@incollection{iooss2015review,
title={A review on global sensitivity analysis methods},
author={Iooss, Bertrand and Lema{\^\i}tre, Paul},
booktitle={Uncertainty management in simulation-optimization of complex systems},
pages={101--122},
year={2015},
publisher={Springer}
}
@Inbook{Baudin2016,
author="Baudin, Micha{\"e}l and Dutfoy, Anne and Iooss, Bertrand and Popelin, Anne-Laure",
Expand Down Expand Up @@ -129,13 +92,6 @@ @techreport{BaudinMethodes2022
number={6125-3119-2022-00175-FR}
}
@unpublished{OpenTURNSCalibrationFlooding,
author = "{Consortium OpenTURNS}",
title = "Calibration of the flooding model",
year = "2022",
note = "\url{http://openturns.github.io/openturns/master/auto_calibration/least_squares_and_gaussian_calibration/plot_calibration_flooding.html}",
}
@techreport{garbow1980implementation,
title={Implementation guide for {MINPACK}-1.},
author={Garbow, Burton S. and Hillstrom, Kenneth E. and More, Jorge J.},
Expand All @@ -151,21 +107,23 @@ @book{kern2016methodes
}
@book{hastie2009elements,
title={The elements of statistical learning: data mining, inference, and prediction},
author={Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome H and Friedman, Jerome H},
volume={2},
year={2009},
publisher={Springer}
@book{lawson1995solving,
title={Solving least squares problems},
author={Lawson, Charles L. and Hanson, Richard J.},
year={1995},
publisher={SIAM}
}
@article{Rocquigny2006LaMaitrise,
title={La maîtrise des incertitudes dans un contexte industriel. 1re partie: une approche méthodologique globale basée sur des exemples.},
author={de Rocquigny, Etienne.},
journal={Journal de la Société française de statistique},
volume={147},
number={3},
pages={33-71},
year={2006}
@book{idier2013bayesian,
title={Bayesian approach to inverse problems},
author={Idier, J{\'e}r{\^o}me},
year={2013},
publisher={John Wiley \& Sons}
}
@book{hansen2013least,
title={Least squares data fitting with applications},
author={Hansen, Per Christian and Pereyra, Victor and Scherer, Godela},
year={2013},
publisher={JHU Press}
}
71 changes: 63 additions & 8 deletions calibration2024/calibration2024.tex
Original file line number Diff line number Diff line change
Expand Up @@ -59,28 +59,83 @@
\begin{frame}
\frametitle{Introduction}

On dispose :
We have:
\begin{itemize}
\item d'observations,
\item d'un modèle paramétrique.
\item a dataset,
\item a parametric model with unknown parameters.
\end{itemize}

On cherche :
We search for:
\begin{itemize}
\item des paramètres,
\item tels que les prédictions du modèle soient
\emph{proches} des observations.
\item parameter values,
\item such that the predictions of the model are as close as possible to the data.
\end{itemize}

Since the dataset is random, we want the distribution of the parameters.

From there, we can compute confidence intervals of the parameters.

\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{flooding_before_calibration.pdf}
\end{center}
\caption{Des observations comparées à des prédictions.}
\caption{Observations compared to the predictions of a model.}
\end{figure}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}[fragile]
\section{Overview}
\frametitle{Overview}

In OpenTURNS, we have several calibration features:
\begin{itemize}
\item \href{https://openturns.github.io/openturns/latest/theory/data_analysis/data_analysis.html#calibration}{theory help pages}
\item \href{https://openturns.github.io/openturns/latest/user_manual/calibration.html}{API help pages}
\item \href{https://openturns.github.io/openturns/latest/auto_calibration/index.html}{examples}.
\end{itemize}


There are two types of features :
\begin{itemize}
\item linear and non linear least squares, Gaussian linear and non linear calibration : \pyvar{*Calibration} classes. These classes compute the \textbf{posterior distribution of the parameters}.
\item Monte Carlo Markov Chain (MCMC) algorithms : \pyvar{*MetropolisHastings}, etc. These classes \textbf{generate a sample from the posterior distribution of the parameters}.
\end{itemize}

The simplest example is \href{https://openturns.github.io/openturns/latest/auto_calibration/least_squares_and_gaussian_calibration/plot_calibration_quickstart.html#sphx-glr-auto-calibration-least-squares-and-gaussian-calibration-plot-calibration-quickstart-py}{Calibrate a parametric model: a quick-start guide to calibration}

Here, we are going to review the \href{https://openturns.github.io/openturns/latest/auto_calibration/least_squares_and_gaussian_calibration/plot_calibration_flooding.html#sphx-glr-auto-calibration-least-squares-and-gaussian-calibration-plot-calibration-flooding-py}{Calibration of the flooding model}
\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}[fragile]
\section{Conclusion}
\frametitle{Conclusion}

Other tools :
\begin{itemize}
\item Calibration methods are also available in \href{https://persalys.fr}{Persalys} : linear and non linear least squares, Gaussian linear and non linear calibration.
\end{itemize}

Perspectives:
\begin{itemize}
\item provide bounds to the optimization algorithms (return truncated normal distribution if necessary);
\item unify the \pyvar{ParametricFunction} in \pyvar{*Calibration} and \pyvar{*MetropolisHastings} classes (exchange the roles of $x$ and $\theta$);
\item calibrate parametric functions with field output more easily;
\item provide algorithms to automatically compute finite difference steps (not specific to calibration);
\item provide the covariance matrix of the parameters as a diagonal matrix;
\item scale the parameters to calibrate (not specific to calibration);
\item implement \pyvar{CalibrationResult.isBayesian()} (see \href{https://github.com/openturns/openturns/issues/2560}{2560});
\item implement a `CalibrationResult` structure for M.-H. classes.
\end{itemize}
\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\section{References}
Expand Down
Binary file not shown.
2 changes: 2 additions & 0 deletions calibration2024/macros.tex
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@
\unitlength=1cm
\graphicspath{{./figures/}}

\usepackage{hyperref}
\hypersetup{colorlinks=true, linkcolor=blue, linktocpage, urlcolor=blue}

\def\bx{{\bf x}}
\def\RR{\mathbb{R}}
Expand Down

0 comments on commit e374c82

Please sign in to comment.