-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatbot_model.py
195 lines (165 loc) · 7.62 KB
/
chatbot_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import json
import os
from datetime import datetime
from features.weather import get_weather
from features.wikipedia import get_wikipedia_summary
from features.calculator import calculate_expression
from features.translator import translate_text
from features.website_opener import open_website
from features.placeholders import replace_placeholders
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import LabelEncoder
learned_intents_file = 'data/learned_intents.json'
intents_file = 'data/intents.json'
memory_file = 'data/memory.json'
def load_data():
try:
with open(learned_intents_file, 'r', encoding='utf-8') as file:
learned_data = json.load(file)
if not learned_data:
learned_data = {"intents": []}
except (FileNotFoundError, json.JSONDecodeError):
learned_data = {"intents": []}
with open(intents_file, 'r', encoding='utf-8') as file:
data = json.load(file)
return data, learned_data
def load_memory():
try:
with open(memory_file, 'r', encoding='utf-8') as file:
memory = json.load(file)
except (FileNotFoundError, json.JSONDecodeError):
memory = {}
return memory
def save_memory(memory):
with open(memory_file, 'w', encoding='utf-8') as file:
json.dump(memory, file, ensure_ascii=False, indent=4)
data, learned_data = load_data()
memory = load_memory()
all_data = data['intents'] + learned_data['intents']
patterns = []
responses = []
tags = []
for intent in all_data:
for pattern in intent['patterns']:
patterns.append(pattern)
responses.append(intent['responses'][0])
tags.append(intent['tag'])
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(patterns)
le = LabelEncoder()
y = le.fit_transform(tags)
def predict_class(text):
text_vec = vectorizer.transform([text])
similarities = cosine_similarity(text_vec, X)
best_match_idx = np.argmax(similarities)
return tags[best_match_idx]
def add_training_data(bot_message, user_message):
tag = "custom"
intent_exists = False
for intent in learned_data['intents']:
if intent['tag'] == tag:
intent['patterns'].append(bot_message)
intent['responses'].append(user_message)
intent_exists = True
break
if not intent_exists:
new_intent = {
"tag": tag,
"patterns": [bot_message],
"responses": [user_message]
}
learned_data['intents'].append(new_intent)
with open(learned_intents_file, 'w', encoding='utf-8') as file:
json.dump(learned_data, file, ensure_ascii=False, indent=4)
print(f"Added training data: {bot_message} -> {user_message}")
def respond_to_query(text):
global memory
text_lower = text.lower()
if "التاريخ" in text_lower or "اليوم" in text_lower:
return replace_placeholders(f"تاريخ الليلة هو {datetime.now().strftime('%Y-%m-%d')}.", memory)
elif "الساعة" in text_lower or "الوقت" in text_lower:
return replace_placeholders(f"الساعة هسي {datetime.now().strftime('%H:%M:%S')}.", memory)
elif "الطقس" in text_lower or "الجو" in text_lower:
return replace_placeholders(get_weather(), memory)
elif "معلومات عن" in text_lower or "منو هو" in text_lower or "شنو هو" in text_lower:
query = text_lower.replace("معلومات عن", "").replace("منو هو", "").replace("شنو هو", "").strip()
return replace_placeholders(get_wikipedia_summary(query), memory)
elif "احسب" in text_lower:
expression = text_lower.replace("احسب", "").strip()
return replace_placeholders(calculate_expression(expression), memory)
elif "ترجم" in text_lower:
parts = text_lower.split(" الى ")
if len(parts) == 2:
phrase, language = parts
phrase = phrase.replace("ترجم", "").strip()
language = language.replace(" اللغة", "").strip()
return replace_placeholders(translate_text(phrase, dest_language=language), memory)
else:
return replace_placeholders(f"{memory.get('name', '')}, اديني الكلام الدايرو واللغة الدايرني اترجمها", memory)
elif "افتح" in text_lower or "شغل" in text_lower:
site_name = text_lower.replace("افتح", "").replace("شغل", "").strip()
return replace_placeholders(open_website(site_name), memory)
elif "اسمي شنو" in text_lower or "ما هو اسمي" in text_lower or "اسمي منو" in text_lower or "انا منو" in text_lower or "من انا" in text_lower:
return replace_placeholders(f"{memory.get('name', 'ما عارف اسمك')}", memory)
elif "انا ولد" in text_lower or "انا بت" in text_lower or "انا بنت" in text_lower:
gender = "ولد" if "ولد" in text_lower else "بت"
memory['gender'] = gender
save_memory(memory)
return replace_placeholders(f"اتشرفنا والله كدا حفظتك انك {gender}.", memory)
elif "انا من" in text_lower:
country = text_lower.replace("انا من", "").strip()
memory['country'] = country
save_memory(memory)
return replace_placeholders(f"غايتو حا اقول ليك اقدع ناس دامك من {country}.", memory)
elif "معاك" in text_lower or "أنا اسمي" in text_lower or "اسمي" in text_lower:
name = text_lower.replace("معاك", "").replace("أنا اسمي", "").replace("اسمي", "").strip()
memory['name'] = name
save_memory(memory)
return replace_placeholders(f"اتشرفنا والله كدا عرفت اسمك يا {name}.", memory)
else:
pred_class = predict_class(text)
for intent in all_data:
if intent['tag'] == pred_class:
response = np.random.choice(intent['responses'])
return replace_placeholders(response, memory)
return learn_new_intent(text)
def learn_new_intent(text):
print(f"ما عندي فكرة عن '{text}'.")
user_feedback = input("شنو الرد المناسب؟: ")
last_bot_message = "هذا هو آخر رسالة من البوت"
tag = "custom"
add_training_data(last_bot_message, user_feedback)
return replace_placeholders(f"اتعلمت الرد الجديد: '{user_feedback}' للتصنيف '{tag}'.", memory)
def get_tags():
tags = set(intent['tag'] for intent in data['intents'])
return list(tags)
def get_learned_tags():
tags = set(intent['tag'] for intent in learned_data['intents'])
return list(tags)
def add_tag(tag):
if not any(intent['tag'] == tag for intent in data['intents']):
data['intents'].append({
"tag": tag,
"patterns": [],
"responses": []
})
with open(intents_file, 'w', encoding='utf-8') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
def remove_tag(tag):
data['intents'] = [intent for intent in data['intents'] if intent['tag'] != tag]
with open(intents_file, 'w', encoding='utf-8') as file:
json.dump(data, file, ensure_ascii=False, indent=4)
if __name__ == "__main__":
queries = [
"اسمي عثمان",
"أنا ولد",
"أنا من السودان",
"ما هو اسمي؟",
"من ياتو دولة انا؟",
"ما هو جنسي؟",
]
for query in queries:
response = respond_to_query(query)
print(f"Query: {query}\nResponse: {response}\n")