class aplr.APLRTuner(parameters: Union[Dict[str, List[float]], List[Dict[str, List[float]]]] = {"max_interaction_level": [0, 1], "min_observations_in_split": [4, 10, 20, 100, 500, 1000]}, is_regressor: bool = True)
parameters (default = {"max_interaction_level": [0, 1], "min_observations_in_split": [4, 10, 20, 100, 500, 1000]})
The parameters that you wish to tune.
Whether you want to use APLRRegressor (True) or APLRClassifier (False).
This method tunes the model to data.
A numpy matrix with predictor values.
A numpy vector with response values.
Optional parameters sent to the fit methods in the underlying APLRRegressor or APLRClassifier models.
Returns the predictions of the best tuned model as a numpy array if regression or as a list of strings if classification.
A numpy matrix with predictor values.
Optional parameters sent to the predict method in the best tuned model.
This method returns predicted class probabilities of the best tuned model as a numpy matrix.
A numpy matrix with predictor values.
Optional parameters sent to the predict_class_probabilities method in the best tuned model.
This method returns predicted class probabilities of the best tuned model as a numpy matrix. Similar to the predict_class_probabilities method but the name predict_proba is compatible with scikit-learn.
A numpy matrix with predictor values.
Optional parameters sent to the predict_class_probabilities method in the best tuned model.
Returns the best tuned model. This is an APLRRegressor or APLRClassifier object.
Returns the cv results from the tuning as a list of dictionaries, List[Dict[str, float]].