Skip to content

Commit

Permalink
refactory v1.30
Browse files Browse the repository at this point in the history
  • Loading branch information
ovitrac committed Mar 7, 2025
1 parent f3b865a commit 29fa9b9
Show file tree
Hide file tree
Showing 42 changed files with 2,974 additions and 1,915 deletions.
31 changes: 16 additions & 15 deletions docs/MigrationModeling/index.html

Large diffs are not rendered by default.

File renamed without changes.
File renamed without changes.
Binary file added docs/wikipages/assets/demo1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/wikipages/assets/demo2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/wikipages/assets/demo3.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
7 changes: 4 additions & 3 deletions docs/wikipages/discussion/layerLinks.html
Original file line number Diff line number Diff line change
Expand Up @@ -840,8 +840,8 @@
.typora-export li, .typora-export p, .typora-export, .footnote-line {white-space: normal;} h1,h2,h3,h4,h5 {white-space:pre-line}
</style><title>layerLinks</title>
</head>
<body class='typora-export'><div class='typora-export-content'>
<div id='write' class=''><h1 id='๐Ÿ”—-layerlink-in-sfppy-dynamic-linking-for-sensitivity-analysis-and-curve-fitting๐Ÿโฉ๐ŸŽ'><span>๐Ÿ”— </span><strong><span>LayerLink in SFPPy: Dynamic Linking for Sensitivity Analysis and Curve Fitting</span></strong><span>๐Ÿโฉ๐ŸŽ</span></h1><hr /><div class='md-toc' mdtype='toc'><p class="md-toc-content" role="list"><span role="listitem" class="md-toc-item md-toc-h1" data-ref="n107"><a class="md-toc-inner" href="#๐Ÿ”—-layerlink-in-sfppy-dynamic-linking-for-sensitivity-analysis-and-curve-fitting๐Ÿโฉ๐ŸŽ">๐Ÿ”— <strong>LayerLink in SFPPy: Dynamic Linking for Sensitivity Analysis and Curve Fitting</strong>๐Ÿโฉ๐ŸŽ</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n113"><a class="md-toc-inner" href="#๐Ÿ“Œ-introduction">๐Ÿ“Œ <strong>Introduction</strong></a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n117"><a class="md-toc-inner" href="#๐Ÿ“–-concept-of-layerlink">๐Ÿ“– <strong>Concept of <code>layerLink</code></strong></a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n123"><a class="md-toc-inner" href="#๐Ÿ”ฌ-sensitivity-analysis-exploring-parameter-impact">๐Ÿ”ฌ <strong>Sensitivity Analysis: Exploring Parameter Impact</strong></a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n130"><a class="md-toc-inner" href="#๐ŸŽฏ-fitting-d-and-k-from-experimental-data">๐ŸŽฏ <strong>Fitting D and k from Experimental Data</strong></a></span><span role="listitem" class="md-toc-item md-toc-h3" data-ref="n132"><a class="md-toc-inner" href="#1๏ธโƒฃ-generate-pseudo-experimental-data"><strong>1๏ธโƒฃ Generate Pseudo-Experimental Data</strong></a></span><span role="listitem" class="md-toc-item md-toc-h3" data-ref="n134"><a class="md-toc-inner" href="#2๏ธโƒฃ-fit-d-and-k-to-minimize-the-difference"><strong>2๏ธโƒฃ Fit D and k to Minimize the Difference</strong></a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n138"><a class="md-toc-inner" href="#๐Ÿ“Œ-conclusion">๐Ÿ“Œ <strong>Conclusion</strong></a></span><span role="listitem" class="md-toc-item md-toc-h3" data-ref="n140"><a class="md-toc-inner" href="#๐Ÿš€-key-takeaways">๐Ÿš€ <strong>Key Takeaways</strong></a></span></p></div><hr /><h2 id='๐Ÿ“Œ-introduction'><span>๐Ÿ“Œ </span><strong><span>Introduction</span></strong></h2><p><code>layerLink</code><span> is a powerful tool in </span><strong><span>SFPPy</span></strong><span> that allows dynamic control over </span><strong><span>diffusivity (D)</span></strong><span> and </span><strong><span>partition coefficients (k)</span></strong><span> in </span><strong><span>mass transfer simulations</span></strong><span>. It enables </span><strong><span>sensitivity analysis</span></strong><span>, </span><strong><span>parameter fitting</span></strong><span>, and </span><strong><span>simulation linking</span></strong><span> without modifying the base layer object.</span></p><p><strong><span>Key applications of </span><code>layerLink</code><span>:</span></strong>
<body class='typora-export typora-export-show-outline typora-export-no-collapse-outline'><div class='typora-export-content'>
<div class="typora-export-sidebar"><div class="outline-content"><li class="outline-item-wrapper outline-h1"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#๐Ÿ”—-layerlink-in-sfppy-dynamic-linking-for-sensitivity-analysis-and-curve-fitting๐Ÿโฉ๐ŸŽ">๐Ÿ”— <strong>LayerLink in SFPPy: Dynamic Linking for Sensitivity Analysis and Curve Fitting</strong>๐Ÿโฉ๐ŸŽ</a></div><ul class="outline-children"><li class="outline-item-wrapper outline-h2"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#๐Ÿ“Œ-introduction">๐Ÿ“Œ <strong>Introduction</strong></a></div><ul class="outline-children"></ul></li><li class="outline-item-wrapper outline-h2"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#๐Ÿ“–-concept-of-layerlink">๐Ÿ“– <strong>Concept of <code>layerLink</code></strong></a></div><ul class="outline-children"></ul></li><li class="outline-item-wrapper outline-h2"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#๐Ÿ”ฌ-sensitivity-analysis-exploring-parameter-impact">๐Ÿ”ฌ <strong>Sensitivity Analysis: Exploring Parameter Impact</strong></a></div><ul class="outline-children"></ul></li><li class="outline-item-wrapper outline-h2"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#๐ŸŽฏ-fitting-d-and-k-from-experimental-data">๐ŸŽฏ <strong>Fitting D and k from Experimental Data</strong></a></div><ul class="outline-children"><li class="outline-item-wrapper outline-h3"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#1๏ธโƒฃ-generate-pseudo-experimental-data"><strong>1๏ธโƒฃ Generate Pseudo-Experimental Data</strong></a></div><ul class="outline-children"></ul></li><li class="outline-item-wrapper outline-h3"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#2๏ธโƒฃ-fit-d-and-k-to-minimize-the-difference"><strong>2๏ธโƒฃ Fit D and k to Minimize the Difference</strong></a></div><ul class="outline-children"></ul></li></ul></li><li class="outline-item-wrapper outline-h2"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#๐Ÿ“Œ-conclusion">๐Ÿ“Œ <strong>Conclusion</strong></a></div><ul class="outline-children"><li class="outline-item-wrapper outline-h3"><div class="outline-item"><span class="outline-expander"></span><a class="outline-label" href="#๐Ÿš€-key-takeaways">๐Ÿš€ <strong>Key Takeaways</strong></a></div><ul class="outline-children"></ul></li></ul></li></ul></li></div></div><div id='write' class=''><h1 id='๐Ÿ”—-layerlink-in-sfppy-dynamic-linking-for-sensitivity-analysis-and-curve-fitting๐Ÿโฉ๐ŸŽ'><span>๐Ÿ”— </span><strong><span>LayerLink in SFPPy: Dynamic Linking for Sensitivity Analysis and Curve Fitting</span></strong><span>๐Ÿโฉ๐ŸŽ</span></h1><hr /><div class='md-toc' mdtype='toc'><p class="md-toc-content" role="list"><span role="listitem" class="md-toc-item md-toc-h1" data-ref="n0"><a class="md-toc-inner" href="#๐Ÿ”—-layerlink-in-sfppy-dynamic-linking-for-sensitivity-analysis-and-curve-fitting๐Ÿโฉ๐ŸŽ">๐Ÿ”— <strong>LayerLink in SFPPy: Dynamic Linking for Sensitivity Analysis and Curve Fitting</strong>๐Ÿโฉ๐ŸŽ</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n6"><a class="md-toc-inner" href="#๐Ÿ“Œ-introduction">๐Ÿ“Œ <strong>Introduction</strong></a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n10"><a class="md-toc-inner" href="#๐Ÿ“–-concept-of-layerlink">๐Ÿ“– <strong>Concept of <code>layerLink</code></strong></a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n16"><a class="md-toc-inner" href="#๐Ÿ”ฌ-sensitivity-analysis-exploring-parameter-impact">๐Ÿ”ฌ <strong>Sensitivity Analysis: Exploring Parameter Impact</strong></a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n23"><a class="md-toc-inner" href="#๐ŸŽฏ-fitting-d-and-k-from-experimental-data">๐ŸŽฏ <strong>Fitting D and k from Experimental Data</strong></a></span><span role="listitem" class="md-toc-item md-toc-h3" data-ref="n25"><a class="md-toc-inner" href="#1๏ธโƒฃ-generate-pseudo-experimental-data"><strong>1๏ธโƒฃ Generate Pseudo-Experimental Data</strong></a></span><span role="listitem" class="md-toc-item md-toc-h3" data-ref="n27"><a class="md-toc-inner" href="#2๏ธโƒฃ-fit-d-and-k-to-minimize-the-difference"><strong>2๏ธโƒฃ Fit D and k to Minimize the Difference</strong></a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n31"><a class="md-toc-inner" href="#๐Ÿ“Œ-conclusion">๐Ÿ“Œ <strong>Conclusion</strong></a></span><span role="listitem" class="md-toc-item md-toc-h3" data-ref="n33"><a class="md-toc-inner" href="#๐Ÿš€-key-takeaways">๐Ÿš€ <strong>Key Takeaways</strong></a></span></p></div><hr /><h2 id='๐Ÿ“Œ-introduction'><span>๐Ÿ“Œ </span><strong><span>Introduction</span></strong></h2><p><code>layerLink</code><span> is a powerful tool in </span><strong><span>SFPPy</span></strong><span> that allows dynamic control over </span><strong><span>diffusivity (D)</span></strong><span> and </span><strong><span>partition coefficients (k)</span></strong><span> in </span><strong><span>mass transfer simulations</span></strong><span>. It enables </span><strong><span>sensitivity analysis</span></strong><span>, </span><strong><span>parameter fitting</span></strong><span>, and </span><strong><span>simulation linking</span></strong><span> without modifying the base layer object.</span></p><p><strong><span>Key applications of </span><code>layerLink</code><span>:</span></strong>
<span>โœ… Sensitivity analysis ๐Ÿ“Š</span>
<span>โœ… Kinetic data fitting ๐Ÿ”</span>
<span>โœ… Dynamically linking simulations ๐Ÿ”„</span>
Expand All @@ -858,5 +858,6 @@
<a href="https://github.com/ovitrac/SFPPy" style="color: #fff; text-decoration: underline;">Website</a> |
<a href="https://ovitrac.github.io/SFPPy/" style="color: #fff; text-decoration: underline;">Documentation</a>
</div></div></div>
</body>

<script>(function(){function e(e,n,i){document.addEventListener(e,function(e){if(!e.defaultPrevented)for(var t=e.target;t&&t!=this;t=t.parentNode)if(t.matches(n)){!1===i.call(t,e)&&(e.preventDefault(),e.stopPropagation());break}},!1)}var t=document.body.parentElement,i=[],r=null,o=document.body.classList.contains("typora-export-collapse-outline");function a(){return t.scrollTop}e("click",".outline-expander",function(e){var t=this.closest(".outline-item-wrapper").classList;return t.contains("outline-item-open")?t.remove("outline-item-open"):t.add("outline-item-open"),u(),!1}),e("click",".outline-item",function(e){var t=this.querySelector(".outline-label");location.hash="#"+t.getAttribute("href"),o&&((t=this.closest(".outline-item-wrapper").classList).contains("outline-item-open")||t.add("outline-item-open"),d(),t.add("outline-item-active"))});function s(){var e=a();r=null;for(var t=0;t<i.length&&i[t][1]-e<60;t++)r=i[t]}function n(){c=setTimeout(function(){var n;i=[],n=a(),document.querySelector("#write").querySelectorAll("h1, h2, h3, h4, h5, h6").forEach(e=>{var t=e.getAttribute("id");i.push([t,n+e.getBoundingClientRect().y])}),s(),u()},300)}var l,c,d=function(){document.querySelectorAll(".outline-item-active").forEach(e=>e.classList.remove("outline-item-active")),document.querySelectorAll(".outline-item-single.outline-item-open").forEach(e=>e.classList.remove("outline-item-open"))},u=function(){if(r&&(d(),t=document.querySelector('.outline-label[href="#'+(CSS.escape?CSS.escape(r[0]):r[0])+'"]')))if(o){var e=t.closest(".outline-item-open>ul>.outline-item-wrapper");if(e)e.classList.add("outline-item-active");else{for(var t,n=(t=t.closest(".outline-item-wrapper")).parentElement.closest(".outline-item-wrapper");n;)n=(t=n).parentElement.closest(".outline-item-wrapper");t.classList.add("outline-item-active")}}else t.closest(".outline-item-wrapper").classList.add("outline-item-active")};window.addEventListener("scroll",function(e){l&&clearTimeout(l),l=setTimeout(function(){s(),u()},300)});window.addEventListener("resize",function(e){c&&clearTimeout(c),n()}),n()})();</script></body>
</html>
7 changes: 4 additions & 3 deletions docs/wikipages/discussion/multiple_inheritance.html

Large diffs are not rendered by default.

Loading

0 comments on commit 29fa9b9

Please sign in to comment.