-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomposition_inference.py
215 lines (179 loc) · 6.72 KB
/
composition_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from argparse import ArgumentParser
import numpy as np
import matplotlib.pyplot as plt
element_dict={
"C": 12.0000000,
"H": 1.0078246,
"N": 14.0030732,
"O": 15.9949141,
"S": 31.972070,
}
result = []
absolute_error = []
def range_calculate(mass, error_range):
error_range = error_range / 1000000.0
left = mass / ( 1 + error_range)
right = mass / (1 - error_range)
return left, right
# 会有大量冗余的计算
def dfs(current_p, res_mass, p, left, right):
print(current_p)
if res_mass > right:
return
if res_mass >= left and res_mass <= right:
result.append(current_p)
return
for a in p:
dfs(current_p+a, res_mass + element_dict[a], p, left, right)
return
# 优化后的计算方式
def fast_dfs(i, number_list, max_number_list, p, left, right, target_mass):
if mass_in_range(number_list, p, left, right, target_mass):
#result.append(number_list)
return
if i >= len(number_list):
return
for k in range(1, max_number_list[i]+1):
number_list[i] = k
fast_dfs(i+1, number_list, max_number_list, p, left, right, target_mass)
return
# 根据绝对误差计算分子式
def ab_fast_dfs(i, number_list, max_number_list, p, targetmass, gamma):
if i == len(number_list):
current_mass = 0.0
for j in range(len(number_list)):
current_mass += element_dict[p[j]]*number_list[j]
if abs(current_mass - targetmass) < gamma:
result.append(number_list.copy())
return
if i > len(number_list):
return
for k in range(1, max_number_list[i]+1):
number_list[i] = k
ab_fast_dfs(i+1, number_list, max_number_list, p, targetmass, gamma)
return
def mass_in_range(number_list, p, left, right, target_mass):
current_mass = 0.0
for i in range(len(number_list)):
current_mass += element_dict[p[i]]*number_list[i]
# print(number_list, current_mass)
if current_mass >= left and current_mass <= right:
result.append(number_list.copy())
# absolute_error.append(target_mass - current_mass)
return True
return False
def main():
parser = ArgumentParser()
parser.add_argument("--mass", type=float, default=252.122, help="the mass for composition analysis")
parser.add_argument("--element_list", type=str, default="CHNO", help="the element used for inference")
parser.add_argument("--error_range", type=float, default=5.0, help="the error range (ppm)")
args = parser.parse_args()
# 检查输入是否正确
p = ""
for a in args.element_list:
if a in element_dict.keys():
p += a
# 计算误差范围
left, right = range_calculate(args.mass, args.error_range)
#print(left, right)
# current_p = ""
# dfs(current_p, 0.0, p, left, right)
# print(result)
number_list = [0] * len(p)
max_number_list = []
for a in p:
max_number_list.append(int(args.mass/element_dict[a])+1)
# print(max_number_list)
print('begin to calculation the combination....')
# print(left, right)
#fast_dfs(0, number_list, max_number_list, p, left, right, args.mass)
ab_fast_dfs(0, number_list, max_number_list, p, args.mass)
#print(p)
#print(len(result))
for i in range(len(result)):
print(result[i])
#print(round(absolute_error[i],5))
def static_for_18_probs():
mass_list = [252.1222, 292.1172, 279.1583, 269.1376,
336.1182, 315.1253, 227.0728, 511.2025,
513.1817, 512.1977, 346.1641, 311.1845,
333.1689, 418.1311, 387.1754, 238.1192,
372.1789, 267.1583, 279.1583, 292.1172]
ppm_range_list = [x for x in range(1, 21)]
p = 'ONCH'
global result
final_list = []
for ppm_error in ppm_range_list:
t_number = []
for mass in mass_list:
left, right = range_calculate(mass, ppm_error)
# print(left, right)
number_list = [0] * len(p)
max_number_list = []
for a in p:
max_number_list.append(int(mass/element_dict[a])+1)
# print(max_number_list)
# print(left, right)
fast_dfs(0, number_list, max_number_list, p, left, right, mass)
t_number.append(len(result))
print(t_number[-1])
result = []
final_list.append(t_number)
print('-', len(final_list))
print(len(final_list))
fig, ax = plt.subplots()
print('detail: ')
for l in final_list:
print(l)
# ax.boxplot(final_list)
ax.violinplot(final_list)
ax.set_xlabel('ppm')
ax.set_ylabel('candidate number')
#ax.set_xticklabels(["girl20", "boy20", "girl30", "boy30"]) # 设置x轴刻度标签
plt.show()
def ab_static_for_18_probs():
mass_list = [252.1222, 292.1172, 279.1583, 269.1376,
336.1182, 315.1253, 227.0728, 511.2025,
513.1817, 512.1977, 346.1641, 311.1845,
333.1689, 418.1311, 387.1754, 238.1192,
372.1789, 267.1583, 279.1583, 292.1172]
ppm_range_list = [x/1000 for x in range(1, 21)]
p = 'ONCH'
labels = []
for ppm in ppm_range_list:
labels.append(str(ppm))
print(labels)
global result
final_list = []
for ppm_error in ppm_range_list:
t_number = []
for mass in mass_list:
# left, right = range_calculate(mass, ppm_error)
# print(left, right)
number_list = [0] * len(p)
max_number_list = []
for a in p:
max_number_list.append(int(mass/element_dict[a])+1)
# print(max_number_list)
# print(left, right)
print(ppm_error, mass)
ab_fast_dfs(0, number_list, max_number_list, p, mass, ppm_error)
t_number.append(len(result))
print(t_number[-1])
result = []
final_list.append(t_number)
print('-', len(final_list))
print(len(final_list))
fig, ax = plt.subplots()
ax.violinplot(final_list)
#ax.boxplot(final_list, labels=labels, showfliers=False)
ax.set_xlabel('absolute error')
ax.set_ylabel('candidate number')
#ax.set_xticklabels(["girl20", "boy20", "girl30", "boy30"]) # 设置x轴刻度标签
plt.show()
if __name__ == "__main__":
static_for_18_probs()
#a=[[1,2,3],[1,4,5]]
#fig, ax = plt.subplots()
#ax.violinplot(a)
#plt.show()