-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_bit_sensitivity.py
executable file
·380 lines (315 loc) · 12.7 KB
/
check_bit_sensitivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import os
import argparse
import torch
from torch.utils.data import *
import torchvision.datasets as dset
import torchvision.transforms as transforms
from tqdm import tqdm
import torch.nn as nn
import copy
import pandas as pd
import numpy as np
## import BFA module
import models
from models.quantization import quan_Conv2d, quan_Linear
import warnings
warnings.filterwarnings("ignore")
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(
description='Check vulnerable',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--arch',
metavar='ARCH',
default='resnet20_quan',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) +
' (default: resnet20_quan)')
parser.add_argument('--test_batch_size',
type=int,
default=256,
help='Batch size.')
parser.add_argument('--seed',
type=int,
default=0,
help='manual seed')
parser.add_argument('--resume',
default="./pretrained/resnet20_8bit_cifar10_92_41.pth.tar",
type=str,
metavar='PATH',
help='path to latest checkpoint (default: pretrained/resnet20_8bit_92_41.pth.tar)')
parser.add_argument('--fine_tune',
dest='fine_tune',
action='store_true',
help='fine tuning from the pre-trained model, force the start epoch be zero'
)
parser.add_argument(
'--reset_weight',
dest='reset_weight',
action='store_true',
help='enable the weight replacement with the quantized weight')
parser.add_argument(
'--quan_bitwidth',
type=int,
default=None,
help='the bitwidth used for quantization')
parser.add_argument(
'--dataset',
type=str,
choices=['cifar10', 'cifar100', 'imagenet'],
default='cifar10',
help='Choose between Cifar10/100 and ImageNet.')
parser.add_argument(
'--dataset_ratio',
type=float,
default=1,
help='using test dataset ratio (default=1)')
parser.add_argument('--save_path',
type=str,
default='./save/',
help='Folder to save csv.')
parser.add_argument('--data_path',
default='../dataset/',
type=str,
help='Path to dataset')
parser.add_argument('--workers',
type=int,
default=4,
help='number of data loading workers (default: 4)')
# Optimization options
args = parser.parse_args()
args.use_cuda = torch.cuda.is_available() # check GPU
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def bin2int(input, num_bits):
'''
convert the unsigned integer (2's complement equivantly) back to the signed integer format
with the bitwise operations. Note that, in order to perform the bitwise operation, the input
tensor has to be in the integer format.
'''
if num_bits == 1:
output = input*2-1
elif num_bits > 1:
mask = 2**(num_bits - 1) - 1
output = -(input & ~mask) + (input & mask)
return output
def int2bin(input, num_bits):
'''
convert the signed integer value into unsigned integer (2's complement equivalently).
Note that, the conversion is different depends on number of bit used.
'''
output = input.clone()
if num_bits == 1: # when it is binary, the conversion is different
output = output/2 + .5
elif num_bits > 1:
output[input.lt(0)] = 2**num_bits + output[input.lt(0)]
return output
def accuracy(output, target, topk=(1, )):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def validate(val_loader, model, criterion, summary_output=False, dataset_ratio=1.0):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
output_summary = [] # init a list for output summary
if dataset_ratio < 1:
max_count = round(len(val_loader.dataset) * dataset_ratio)
max_iter = max_count // args.test_batch_size
else:
max_iter = 1000000
with torch.no_grad():
for i, (input, target) in enumerate(tqdm(val_loader)):
if args.use_cuda:
target = target.cuda()
input = input.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# summary the output
if summary_output:
tmp_list = output.max(1, keepdim=True)[1].flatten().cpu().numpy() # get the index of the max log-probability
output_summary.append(tmp_list)
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
if i > max_iter:
break
print(
' **Test (# of data {number:.2f})** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'
.format(number=i*args.test_batch_size, top1=top1, top5=top5, error1=100 - top1.avg))
if summary_output:
output_summary = np.asarray(output_summary).flatten()
return top1.avg, top5.avg, losses.avg, output_summary
else:
return top1.avg, top5.avg, losses.avg
def main():
net = models.__dict__[args.arch]()
if args.dataset == 'cifar10':
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
elif args.dataset == 'cifar100':
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
std = [x / 255 for x in [68.2, 65.4, 70.4]]
elif args.dataset == 'imagenet':
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
else:
print("Don't find Datasets")
if args.dataset == 'imagenet':
if "inception" in args.arch:
train_transform = transforms.Compose([
transforms.RandomResizedCrop(299),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
test_transform = transforms.Compose([
transforms.Resize(299),
transforms.CenterCrop(299),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]) # here is actually the validation dataset
else :
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]) # here is actually the validation dataset
else:
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
test_transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(mean, std)])
if args.dataset == 'cifar10':
test_data = dset.CIFAR10(args.data_path,
train=False,
transform=test_transform,
download=True)
elif args.dataset == 'cifar100':
test_data = dset.CIFAR100(args.data_path,
train=False,
transform=test_transform,
download=True)
elif args.dataset == "imagenet":
test_dir = os.path.join(args.data_path, 'val')
test_data = dset.ImageFolder(test_dir, transform=test_transform)
test_loader = DataLoader(test_data,
batch_size=args.test_batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
state_tmp = net.state_dict()
if 'state_dict' in checkpoint.keys():
state_tmp.update(checkpoint['state_dict'])
else:
state_tmp.update(checkpoint)
net.load_state_dict(state_tmp)
else:
print("=>can't find loading checkpoint '{}'".format(args.resume))
# update the step_size once the model is loaded. This is used for quantization.
for m in net.modules():
if isinstance(m, quan_Conv2d) or isinstance(m, quan_Linear):
# simple step size update based on the pretrained model or weight init
m.__reset_stepsize__()
m.__reset_weight__()
if not args.use_cuda:
return "This program using only GPU"
net_clean = copy.deepcopy(net)
total_df = pd.DataFrame()
count=0
net.cuda()
origin_top1, origin_top5, loss = validate(test_loader, net, nn.CrossEntropyLoss(), False, dataset_ratio=args.dataset_ratio)
for i, (n, m) in enumerate(net.named_modules()):
if isinstance(m, quan_Conv2d):
count+=1
full_length = m.weight.nelement()
print("==*40")
print(f"{n} module test")
print("==*40")
for weight_idx in range(full_length):
net.cuda()
original_m_weight = m.weight.data.clone()
filter_idx = idx_to_filter(weight_idx, m)
print(f"weight idx {weight_idx} / {full_length} ({filter_idx}) flip and acc check")
flatten_weight = m.weight.cpu().detach().flatten()
print(f"original {filter_idx} value : \t {flatten_weight[weight_idx]}")
bin_w = int2bin(flatten_weight[weight_idx], m.N_bits).short()
# select msb bit
mask = (bin_w.clone().zero_() + 1) * (2**(m.N_bits-1))
bin_w = bin_w ^ mask
int_w = bin2int(bin_w, m.N_bits).float()
print(f"Flip {filter_idx} value : \t {int_w}")
flatten_weight[weight_idx] = int_w
m.weight.data = flatten_weight.view(m.weight.data.size()).cuda()
top1, top5, loss = validate(test_loader, net, nn.CrossEntropyLoss(), False, dataset_ratio=args.dataset_ratio)
print("--"*40)
dict_result = {"model_name": args.arch, "ori_top1":origin_top1, "ori_top5":origin_top5, "atk_top1":top1, "atk_top5":top5, "module":n, "module_idx":i, "weight_idx":filter_idx, "weight_idx_flatten":weight_idx}
total_df= total_df.append(dict_result, ignore_index=True)
save_path = os.path.join(args.save_path, "result.csv")
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
total_df.to_csv(save_path)
m.weight.data = original_m_weight
#net = copy.deepcopy(net_clean)
print("==*40")
print("end module test ", n)
print("==*40")
print("end network check")
return
def idx_to_filter(weight_idx, m):
n, c, h, w = m.weight.shape
out_n = weight_idx // (c*h*w)
out_chw = weight_idx % (c*h*w)
out_c = out_chw // (h*w)
out_hw = out_chw % (h*w)
out_h = out_hw // w
out_w = out_hw % w
return out_n, out_c, out_h, out_w
if __name__ == "__main__":
main()
print("end")