-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
122 lines (102 loc) · 3.79 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import streamlit as st
import pandas as pd
import numpy as np
from google.cloud import firestore_v1
from queue import Queue
from datetime import datetime
import altair as alt
import random
DEVICE_DISPLAY_MAX = 4
MINUTES_TO_DISPLAY = 45
COLUMN_COUNT = 2
FRIENDLY_DEVICE_NAMES = {
"dev:860322068099875": "Wall Screen",
"dev:860322067840667": "True Fridge",
"dev:860322068093811": "Blues Billboard",
"dev:860322068094264": "Booth",
}
TITLE = "Blue/Useful Sensors Retail Analytics"
db = firestore_v1.Client()
collection_ref = db.collection(u'person-sensor-blues-data')
q = Queue()
def on_snapshot(collection_snapshot, changes, read_time):
docs_by_device = {}
for doc in collection_snapshot:
doc_dict = doc.to_dict()
if "device" not in doc_dict or "time" not in doc_dict or "num_faces" not in doc_dict:
continue
device = doc_dict["device"]
if device not in docs_by_device:
docs_by_device[device] = []
docs_by_device[device].append(doc_dict)
for device in docs_by_device.keys():
docs_by_device[device].sort(key=lambda x: x["time"], reverse = True)
most_recent_time = docs_by_device[device][0]["time"]
cutoff_time = most_recent_time - (MINUTES_TO_DISPLAY * 60)
most_recent = []
for doc in docs_by_device[device]:
if doc["time"] > cutoff_time:
most_recent.append(doc)
docs_by_device[device] = most_recent
frames_by_device = {}
for device in docs_by_device.keys():
doc_dicts = docs_by_device[device]
friendly_times = []
for doc_dict in doc_dicts:
json_time = doc_dict["time"] * 1000
num_faces = doc_dict["num_faces"]
if "num_facing_faces" in doc_dict:
num_facing_faces = doc_dict["num_facing_faces"]
else:
num_facing_faces = 0
friendly_times.append({
"time": json_time,
"People": num_faces,
"Attention": num_facing_faces
})
frames_by_device[device] = pd.DataFrame(friendly_times, columns=["time", "People", "Attention"])
q.put(frames_by_device) # Put data into the Queue
collection_watch = collection_ref.on_snapshot(on_snapshot)
st.set_page_config(layout="wide")
st.title(TITLE)
columns = st.columns(COLUMN_COUNT)
snaps = []
for i in range(DEVICE_DISPLAY_MAX):
with columns[i % COLUMN_COUNT]:
snaps.append(st.empty())
while True:
frames_by_device = q.get() # Read from the Queue
for index, device in enumerate(frames_by_device.keys()):
if index >= DEVICE_DISPLAY_MAX:
break
frame = frames_by_device[device]
if device in FRIENDLY_DEVICE_NAMES:
friendly_device_name = FRIENDLY_DEVICE_NAMES[device]
else:
friendly_device_name = device
latest_value = int(round(frame["People"].values[0]))
title = f"{friendly_device_name} - {latest_value} People"
chart = alt.Chart(frame, title=title).mark_area(
line={'color':'darkgreen'},
color=alt.Gradient(
gradient='linear',
stops=[alt.GradientStop(color='white', offset=0),
alt.GradientStop(color='darkgreen', offset=1)],
x1=1,
x2=1,
y1=1,
y2=0
)
).encode(
alt.X('time:T', axis=alt.Axis(
title="Time"
)),
alt.Y(alt.repeat('layer'),
type='quantitative',
axis=alt.Axis(
title="People",
)
).scale(domain=(0,5)),
color=alt.ColorDatum(alt.repeat('layer'))
).repeat(layer=["People", "Attention"])
snaps[index].altair_chart(chart, use_container_width=True)