forked from axolotl-ai-cloud/axolotl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalpaca_chat.py
116 lines (87 loc) · 3.42 KB
/
alpaca_chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""Module containing the AlpacaQAPromptTokenizingStrategy class"""
from typing import Tuple
from axolotl.prompt_tokenizers import (
AlpacaPromptTokenizingStrategy,
InstructionPromptTokenizingStrategy,
)
from axolotl.prompters import AlpacaPrompter, PromptStyle, UnpromptedPrompter
def load(tokenizer, cfg):
return AlpacaPromptTokenizingStrategy(
AlpacaPrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
class AlpacaConcisePrompter(AlpacaPrompter):
"""
Alpaca Prompter extending the system prompt to ask for concise chat-instruct answers
"""
system_prompt = "Below is an instruction from a USER that describes a task, paired with an input that provides further context. The ASSISTANT writes a response that concisely and appropriately completes the request.\n\n"
system_no_input_prompt = "Below is an instruction from a USER that describes a task. The ASSISTANT writes a response that appropriately and concisely completes the request.\n\n"
class AlpacaChatPrompter(AlpacaPrompter):
"""
Alpaca Chat Prompter extending the system prompt to for chat-instruct answers
"""
system_prompt = "Below is an instruction from a USER that describes a task, paired with an input that provides further context. The ASSISTANT writes a response that concisely and appropriately completes the request.\n\n"
system_no_input_prompt = "Below is an instruction from a USER that describes a task. The ASSISTANT writes a response that appropriately and concisely completes the request.\n\n"
def __init__(self): # pylint: disable=super-init-not-called
self.prompt_style = PromptStyle.CHAT.value
self.match_prompt_style()
class NoSystemPrompter(AlpacaPrompter):
"""
Null Prompter with no system prompts
"""
system_prompt = ""
system_no_input_prompt = ""
turn_format = "{instruction} {input} "
turn_no_input_format = "{instruction} "
def __init__(self): # pylint: disable=super-init-not-called
pass
class AlpacaQAPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for AlpacaQA
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["question"],
"",
prompt["answer"],
)
class CamelAIPromptTokenizingStrategy(InstructionPromptTokenizingStrategy):
"""
Tokenizing strategy for CamelAI datasets
"""
def parse_instruction_fields(self, prompt) -> Tuple[str, str, str]:
return (
prompt["message_1"],
"",
prompt["message_2"],
)
def load_concise(tokenizer, cfg):
return AlpacaPromptTokenizingStrategy(
AlpacaConcisePrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_qa(tokenizer, cfg):
return AlpacaQAPromptTokenizingStrategy(
AlpacaChatPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_camel_ai(tokenizer, cfg):
return CamelAIPromptTokenizingStrategy(
AlpacaChatPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
def load_no_prompt(tokenizer, cfg):
return AlpacaPromptTokenizingStrategy(
UnpromptedPrompter(PromptStyle.CHAT.value),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)