-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplines.py
79 lines (50 loc) · 2.56 KB
/
splines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 22 02:44:17 2020
@author: prchi
"""
import numpy as np
from scipy.interpolate import splev, splrep
#https://www.math24.net/curvature-radius/#:~:text=The%20radius%20of%20curvature%20of,%E2%80%B2%E2%80%B2(x)%7C.
#%% Find bspline path:
#https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html
#https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html
def bspline_path(x, y, sn, k):
t = range(len(x))
x_tup = splrep(t, x, k=k) #parametrize x,y on another variable t
y_tup = splrep(t, y, k=k)
x_list = list(x_tup)
x_list[1] = x
y_list = list(y_tup)
y_list[1] = y
points = np.linspace(0.0, len(x)-1, sn)
tx = splev(points , x_list) #Extrapolate to cartesian coordinates
ty = splev(points , y_list)
dx = splev(points , x_list, der=1) #1st order derivates along x & y
dy = splev(points , y_list, der=1)
ddx = splev(points , x_list, der=2)
ddy = splev(points , y_list, der=2) #2nd order derivates along x & y
return np.array(tx), np.array(ty), np.array(dx), np.array(dy), np.array(ddx), np.array(ddy)
#%% Find Radius of curvature at each point in the path:
#https://www.math24.net/curvature-radius/
def radius_of_curvature(dx, dy, ddx, ddy, n_edges):
R = np.power((dx**2 + dy**2), 3/2)/np.absolute(dx*ddy - dy*ddx) #Radius of curvature formula for parametric curve
R_avg=[]
for i in np.arange(0, n_edges, 1):
avg = np.mean(R[i*30:(i+1)*30]) #Calculate average Radius of curvature for each edge
R_avg.append(avg)
return R
#%% Find violations from minimum turning radius of Robot in the given path:
def prob_pnts(route_x, route_y, R_avg):
d_x=[]
d_y=[]
indx=[]
for i in range(len(R_avg)-1):
if R_avg[i]<100 and i!=0 and i!=len(R_avg)-1: #Check for those points whose Radius of curvature
d_x.append([route_x[i],route_x[i+1]]) # is less than minumum
d_y.append([route_y[i],route_y[i+1]])
indx.append([i,i+1])
d_x=np.array(d_x).ravel()
d_y=np.array(d_y).ravel()
indx=np.array(indx).ravel()
return indx,d_x,d_y