-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
109 lines (97 loc) · 3.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
from collections import deque
import matplotlib.pyplot as plt
from dqn_agent import Agent
import torch
import os
from unityagents import UnityEnvironment
def dqn(
env,
n_episodes=10000,
max_t=1000,
eps_start=1.0,
eps_end=0.005,
eps_decay=0.995,
train_mode=True,
):
"""Deep Q-Learning.
Params
======
agent:
env:
n_episodes (int): maximum number of training episodes
max_t (int): maximum number of timesteps per episode
eps_start (float): starting value of epsilon, for epsilon-greedy action selection
eps_end (float): minimum value of epsilon
eps_decay (float): multiplicative factor (per episode) for decreasing epsilon
train_mode (bool): set environment into training mode if True.
"""
scores = [] # list containing scores from each episode
scores_window = deque(maxlen=100) # last 100 scores
eps = eps_start # initialize epsilon
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
action_size = brain.vector_action_space_size
env_info = env.reset(train_mode=train_mode)[brain_name]
state_size = len(env_info.vector_observations[0])
agent = Agent(state_size=state_size, action_size=action_size, seed=1)
for i_episode in range(1, n_episodes + 1):
state = env_info.vector_observations[0]
score = 0
for _ in range(max_t):
action = np.int32(agent.act(state, eps))
env_info = env.step(action)[
brain_name
] # send the action to the environment
next_state = env_info.vector_observations[0] # get the next state
reward = env_info.rewards[0] # get the reward
done = env_info.local_done[0] # see if episode has finished
agent.step(state, action, reward, next_state, done)
state = next_state
score += reward
if done:
env.reset(train_mode=train_mode)[brain_name]
break
scores_window.append(score) # save most recent score
scores.append(score) # save most recent score
eps = max(eps_end, eps_decay * eps) # decrease epsilon
print(
"\rEpisode {}\tAverage Score: {:.2f}".format(
i_episode, np.mean(scores_window)
),
end="",
)
if i_episode % 100 == 0:
print(
"\rEpisode {}\tAverage Score: {:.2f}".format(
i_episode, np.mean(scores_window)
)
)
if np.mean(scores_window) >= 13.0:
print(
"\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}".format(
i_episode - 100, np.mean(scores_window)
)
)
torch.save(agent.qnetwork_local.state_dict(), "checkpoint_vanilla.pth")
break
return scores
if __name__ == "__main__":
os.environ["NO_PROXY"] = "localhost,127.0.0.*"
from datetime import datetime
file_name=r"Banana/Banana"
env_visible = False # Whether you want to see the agent doing training/inference.
env = UnityEnvironment(file_name=file_name, base_port=64738, no_graphics=not env_visible)
start = datetime.now()
scores = dqn(env=env)
end = datetime.now()
print("Duration: {}".format(end - start))
# plot the scores
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(np.arange(len(scores)), scores)
plt.ylabel("Score")
plt.xlabel("Episode #")
plt.show()