-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathff_validation.tex
1025 lines (953 loc) · 77.1 KB
/
ff_validation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass{article}\usepackage[table]{xcolor}
\usepackage[]{graphicx}\usepackage[table]{xcolor}
% maxwidth is the original width if it is less than linewidth
% otherwise use linewidth (to make sure the graphics do not exceed the margin)
\makeatletter
\def\maxwidth{ %
\ifdim\Gin@nat@width>\linewidth
\linewidth
\else
\Gin@nat@width
\fi
}
\makeatother
\definecolor{fgcolor}{rgb}{0.345, 0.345, 0.345}
\newcommand{\hlnum}[1]{\textcolor[rgb]{0.686,0.059,0.569}{#1}}%
\newcommand{\hlstr}[1]{\textcolor[rgb]{0.192,0.494,0.8}{#1}}%
\newcommand{\hlcom}[1]{\textcolor[rgb]{0.678,0.584,0.686}{\textit{#1}}}%
\newcommand{\hlopt}[1]{\textcolor[rgb]{0,0,0}{#1}}%
\newcommand{\hlstd}[1]{\textcolor[rgb]{0.345,0.345,0.345}{#1}}%
\newcommand{\hlkwa}[1]{\textcolor[rgb]{0.161,0.373,0.58}{\textbf{#1}}}%
\newcommand{\hlkwb}[1]{\textcolor[rgb]{0.69,0.353,0.396}{#1}}%
\newcommand{\hlkwc}[1]{\textcolor[rgb]{0.333,0.667,0.333}{#1}}%
\newcommand{\hlkwd}[1]{\textcolor[rgb]{0.737,0.353,0.396}{\textbf{#1}}}%
\let\hlipl\hlkwb
\usepackage{framed}
\makeatletter
\newenvironment{kframe}{%
\def\at@end@of@kframe{}%
\ifinner\ifhmode%
\def\at@end@of@kframe{\end{minipage}}%
\begin{minipage}{\columnwidth}%
\fi\fi%
\def\FrameCommand##1{\hskip\@totalleftmargin \hskip-\fboxsep
\colorbox{shadecolor}{##1}\hskip-\fboxsep
% There is no \\@totalrightmargin, so:
\hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}%
\MakeFramed {\advance\hsize-\width
\@totalleftmargin\z@ \linewidth\hsize
\@setminipage}}%
{\par\unskip\endMakeFramed%
\at@end@of@kframe}
\makeatother
\definecolor{shadecolor}{rgb}{.97, .97, .97}
\definecolor{messagecolor}{rgb}{0, 0, 0}
\definecolor{warningcolor}{rgb}{1, 0, 1}
\definecolor{errorcolor}{rgb}{1, 0, 0}
\newenvironment{knitrout}{}{} % an empty environment to be redefined in TeX
\usepackage{alltt}%%
\usepackage{makecell}
\usepackage{amsmath}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{url}
\usepackage{booktabs}
\usepackage{longtable}
\usepackage{multirow}
\usepackage[table]{xcolor}
\usepackage[]{graphicx}
\usepackage[]{color}
\usepackage{wrapfig}
\usepackage{float}
\usepackage{colortbl}
\usepackage{pdflscape}
\usepackage{tabu}
\usepackage{threeparttable}
\newcommand{\logit}{\mathrm{logit}}
\renewcommand{\$}{$} %$
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\DeclareUnicodeCharacter{B1}{$\pm$}
\DeclareUnicodeCharacter{2192}{$\rightarrow$}
\usepackage{hyperref}
\topmargin -1.5cm % read Lamport p.163
\oddsidemargin -0.6cm % read Lamport p.163
\evensidemargin -0.6cm % same as oddsidemargin but for left-hand pages
\textwidth 17.4cm
\textheight 23.94cm
\setlength{\parindent}{0.5cm}
\title{Data analysis supplement to ``Challenges associated with the validation
of protein force-fields based on structural criteria.''}
\author{M.~Stroet, M.~Setz, T.~Lee, A.~Malde, G.~van~den~Bergen,
\\P.~Sykacek\footnote{The responsibility for the analyses reported
in this supplement lies with P.~Sykacek email: peter.sykacek@boku.ac.at},
C.~Oostenbrink and Alan E. Mark}
\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
\begin{document}
\maketitle
\section{Introduction}
All calculations in this document are based on the statistics package
R version 4.1.2 (2021-11-01). %$
For improved reproducibility we provide the document source
``ff\_validation\_nlme.Rnw'' as supplement. When placed together with
the files ``Simulation\_data.csv'', ``Reference\_data.csv'' and
``pdb\_id\_lengths.csv'' in the same directory, the document source
can be processed by R and the package knitr \cite{Xie:2014, Xie:2015},
as long as all additional dependencies (availability of the R packages
``kableExtra'', ``lme4'', ``emmeans'', ``car'', ``lattice'', ``nlme''
and ``dplyr'') are met. To reproduce the pdf version of this
supplement, interested readers have to use the following commands:
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlcom{## in R:}
\hlkwd{library}\hlstd{(knitr)}
\hlkwd{knit}\hlstd{(}\hlstr{"ff_validation.Rnw"}\hlstd{)}
\hlcom{## on the command line:}
\hlcom{## > pdflatex ff_validation.tex}
\end{alltt}
\end{kframe}
\end{knitrout}
It should be kept in mind that optimization control in the scripts
below were set to assure that a suitably small error tolerance is
reached. In case you wish to replicate the analysis, you have to
consider that as a result of these settings {\em the knitr phase in R
takes a considerable amount of time}.
\section{Characterization of simulated proteins}
A detailed discussion of all metrics that were calculated from
simulation outcome is provided in the main paper. From a data analysis
perspective it is however important to describe the nature of the
metrics as this is important for further statistical consideration.
\begin{center}
\begin{tabular}{l l l}
Variable name & Term in paper& Type of metric\\
B\_Strand: &$\beta$-strand& count metric\\
A\_Helix: &$\alpha$-helix& count metric\\
B\_Bridge:& bridges between two $\beta$-strands in a $\beta$-sheet& count metric \\
ThreeTen\_Helix: & $3_{10}$-helix & count metric \\
Pi\_Helix: & $\pi$-helix & count metric \\
Hbond\_bb\_0.25\_120: &Hydrogen bonds& count metric\\
SASA\_polar: & solvent accessible surface area for polar residues & positive quantity\\
SASA\_nonpolar: &solvent accessible surface area for non polar residues & positive quantity\\
Rgyr: &Radius of gyration & positive quantity\\
RMSD.ADJ: &Length adjusted positional RMSD & positive quantity\\
phi\_rmsd: &Angular RMSD & positive quantity\\
psi\_rmsd: &Angular RMSD & positive quantity\\
NOE\_repl\_merged: & NOE intensities & positive quantity\\
Jvalue: &J-coupling constants& positive quantity
\end{tabular}
\end{center}
\section{Data preprocessing}
Our approach for assessing protein characteristics follows
\cite{Villa+etal:2007}, who proposed analyzing the effects of force
fields on molecular-simulation derived protein characteristics with a
MANOVA. MANOVA type analyses have the advantage of increased power of
detecting significance in case of {\em correlated} multivariate
responses. MANOVA or multivariate linear models assume that the
residuals are multivariate Gaussian distributions.
The metrics which characterize proteins are however either counts or
positive quantities. Analysis of such data will likely result in
residuals which deviate from Gaussian distributions, thus violating
assumptions which are inherent to MANOVA and linear models. To improve
compliance with Gaussian distributed residuals, we apply Box-Cox power
transformations \cite{Box+Cox:1964} on all individual metrics before
subjecting the data to a multivariate multilevel analysis. We used to
this end the functions provided in the R package car
\cite{Fox+Weisberg:2019}. To fulfill the constraint of the Box-Cox
power transformation in the car package that values must be larger
zero we set all zero or negative values before transformation to a
value which equals $10\%$ of the smallest non zero value. This
preprocessing was motivated to allow for a multivariate analysis of
all protein characteristics in combination.
An additional complication arises in this particular situation with
RMSD values which are known to depend on protein size. In combination
with the unbalanced nature of the simulation experiment a protein
length could confound the algorithm effect which we wish to assess. To
avoid any chances of being mislead, we apply therefore the
normalization procedure of RMSD values that was proposed in
\cite{Carugo+Pongor:2001}, before subjecting the adjusted RMSD values
to a Box-Cox transformation as well.
A significance analysis for pair wise differences of metric values
between force fields is supplemented by analyses which assess
differences between simulation derived and measured protein
characteristics. With measured protein characteristics we refer to
characteristics whcih are derived from experimentally determined
crystal structure. The latter result allows for judgements of the
influence of force fileds on the agreement between simulation and
measurement.
\section{MANOVA and multivariate multilevel analysis}
The analysis in this work is inspired by \cite{Villa+etal:2007}, who
proposed an analysis of the effects of force fields on
molecular-simulation derived protein characteristics. Their original
approach is based on MANOVA type analyses which have the advantage of
increased power of detecting significance in case of {\em correlated}
multivariate responses. Albeit straightforward to apply, a
conventional MANOVA has in our situation several shortcomings.
\begin{enumerate}
\item MANOVA is only applicable to complete multivariate vectors of
protein characteristics. Including missing information requires in
such analyses additional steps like multiple imputations.
\item Using linear model terminology, our assessment of force fields
require to consider three effects: a) the force field, b) the
simulated protein and c) technical replication of simulation
runs. Technical drop outs (e.g. problems of the compute
infrastructure) or a deliberate reduction of the number of lengthy
simulations runs will in general cause unbalanced designs. This
renders fixed effects analyses as in \cite{Villa+etal:2007} poorly
specified, as unbalanced multi-effects models will in general lead
to a dependency of p-values on the chosen type of sums of squares
calculation (type I, II and III ANOVA).
\item An even more profound implication on our assessments of force
fields results from the fact that the replication of simulation runs
and the variation of simulated proteins must be considered as
independent random effects. Fixed effects analyses have in such
situations a general tendency to overestimate significance. Such
situations should thus preferably be assessed with mixed effects
models \cite{Pinheiro+Bates:2000}.
\end{enumerate}
For considering the multivariate multilevel aspect of the data, we
suggest following \cite{Snijders+Bosker:2012} pages 282 ff. To
implement their proposition in our setting, we rely on the R-nlme
package \cite{Pinheiro+Bates:2000}. In the context of multivariate
multilevel analysis, we can use a likelihood ratio test
\cite{Mood+etal:1984} to assess all metrics in combination for
significant dependencies on different force fields. Using the notion
in \cite{Snijders+Bosker:2012}, chapter 16, we have to compare an
``empty'' model which expresses the derived values of all metrics by a
metric effect and attributes all further variation to the random
effects ``protein'' and ``simulation run''. The more complex
alternative hypothesis considers ``force field'' and interactions
between ``force field'' and ``metric'' as additional fixed effects. A
subsequent assessment of the likelihood ratio of these two models
provides the required p-value for assessing the molecular simulation
derived protein characteristics for significant dependencies on
``force field''.
\subsection{Multivariate multilevel analysis}
After data preprocessing the proposed assessment of whether predicted
protein characteristics depend significantly on ``force field'' may be
obtained by a step by step translation of the R and nlme based
implementation of the example in \cite{Snijders+Bosker:2012} chapter
16. The authors provide a respective sample script at
\url{http://www.stats.ox.ac.uk/~snijders/ch16.r} for download.
\subsubsection{Rearranging the multivariate input data}
\begin{enumerate}
\item The first step in applying a multivariate multilevel analysis
requires us to rearrange the multivariate data to obtain a univariate
response variable ``all.y'' which holds the preprocessed metric
values. To allow the identification of the metric which corresponds
to the value we need to add a factor variable ``quant.fact'' which
denotes the corresponding type of metric. To complete the
description of the data, additional factors are required to identify
the applied force field (``all.alg''), the simulated protein
(``all.comp'') and the simulation run (``all.rep''). All variables
are constructed from the preprocessed protein characteristics and
bound to an R data frame.
\item Missing protein characterizations which appear as missing values
in the multivariate input vectors are subsequently removed by
reducing the data to all complete cases.
\item To allow calculating the correlation structure by the nlme
package, the final step in rearranging the data is to reorder the
data by metric type ``quant.fact'', protein id ``all.comp'' and
simulation run ``all.rep''.
\end{enumerate}
\subsubsection{The ``empty'' multivariate multilevel model}
Using the mixed effects linear model lme from the R nlme package for a
multivariate multilevel analysis requires us to specify four parts.
\begin{enumerate}
\item Function lme requires to specify the fixed effects term of the
model equation separately. For the ``empty'' model we assume that
metric values are independent of the force field. Hence only
depending on ``quant.fact'' the fixed effects model equation is:
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{all.y}\hlopt{~-}\hlnum{1}\hlopt{+}\hlstd{quant.fact}
\end{alltt}
\end{kframe}
\end{knitrout}
\item The second specification concerns the random effects
contribution. Irrespective of how we structure the fixed effects
formula, we have to identify the metric value as conditional on
the random effect ``protein''. The second random effect ``simulation
run'' which is nested within ``protein'' determines the residual
variance of the model and requires no separate specification. The
required random effect model formula is thus:
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlopt{~ -}\hlnum{1}\hlopt{+}\hlstd{quant.fact}\hlopt{|}\hlstd{all.comp}
\end{alltt}
\end{kframe}
\end{knitrout}
\item An important characteristic of MANOVA analyses is their ability
to model multivariate residuals. In order to unlock this ability for
the essentially univariate lme model, we need to use its ``weights''
parameter. By an appropriate parametrization we allow for heteroscedasticity
thus obtaining relations similar to MANOVA analyses where
each sequence characteristic gets its own variance component. In the
context of lme, we achieve this by using the ``VarIdent'' variance
function (see \cite{Pinheiro+Bates:2000}, page 209) which allows for
residual variances to differ across levels of a stratification
variable. In our case we have to use ``quant.fact'' as
stratification variable and parameterize the weights parameter of lme
as:
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{weights}\hlkwb{=}\hlkwd{varIdent}\hlstd{(}\hlkwc{form}\hlstd{=}\hlopt{~}\hlnum{1}\hlopt{|}\hlstd{quant.fact)}
\end{alltt}
\end{kframe}
\end{knitrout}
\item To arrive at a noise model which mimics the multivariate
residuals of a MANOVA we have finally also got to consider the
correlation structure between different ``quant.fact'' levels. This
is achieved by using the ``corr'' parameter of lme and a
parametrization by one of the ``corStruct'' classes in nlme. In
order to obtain a MANOVA compatible correlation structure, we use
the generic corSym class (see \cite{Pinheiro+Bates:2000}, page 234)
and parameterize it by a formula which regards the numeric
representation of the factor variable ``quant.fact'' as conditional
on the random effects ``simulation run'' which is nested within
``protein''. The respective corr parametrization is thus:
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{corr}\hlkwb{=}\hlkwd{corSymm}\hlstd{(}\hlkwc{form}\hlstd{=}\hlopt{~}\hlkwd{as.numeric}\hlstd{(quant.fact)}\hlopt{|}\hlstd{all.comp}\hlopt{/}\hlstd{all.rep)}
\end{alltt}
\end{kframe}
\end{knitrout}
\end{enumerate}
\subsubsection{Adding force field as regressor}
Our assessment of whether different force fields lead to statistically
significant variations of sequence characteristics rely on a
likelihood ratio test. This is achieved by comparing the ``empty''
model with a more complex multivariate multilevel model, which uses
the factor ``all.alg'' representing different force fields as
additional regressor. The only difference between the ``empty'' model
and this alternative explanation of sequence characteristics is a
different fixed effects formula which in our case is:
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{all.y}\hlopt{~}\hlstd{quant.fact}\hlopt{*}\hlstd{all.alg}
\end{alltt}
\end{kframe}
\end{knitrout}
\subsubsection{Likelihood ratio test}
The likelihood ratio test (see \cite{Pinheiro+Bates:2000}, page 83)
which allows us to infer whether the sequence characteristics we
predict from simulation runs depend significantly on chosen force
fields requires two model fits which are passed as parameters to
function anova. The latter function calculates the p-value of the
likelihood ratio test and provides a textual summary of the model
comparison. Note that for reasons of clarity, details like the
necessary adjustments of optimization control have been left out in
this code chunk.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlcom{## fit of the empty model}
\hlstd{lme.fit.n} \hlkwb{<-} \hlkwd{lme}\hlstd{(all.y}\hlopt{~-}\hlnum{1}\hlopt{+}\hlstd{quant.fact,} \hlkwc{random} \hlstd{= rnd.frm,}
\hlkwc{weights}\hlstd{=}\hlkwd{varIdent}\hlstd{(}\hlkwc{form}\hlstd{=}\hlopt{~}\hlnum{1}\hlopt{|}\hlstd{quant.fact),}
\hlkwc{corr}\hlstd{=}\hlkwd{corSymm}\hlstd{(}\hlkwc{form}\hlstd{=}\hlopt{~}\hlkwd{as.numeric}\hlstd{(quant.fact)}\hlopt{|}\hlstd{all.comp}\hlopt{/}\hlstd{all.rep),}
\hlkwc{data}\hlstd{=univ.analyse.data,}
\hlkwc{control}\hlstd{=alg.ctrl,} \hlkwc{method}\hlstd{=}\hlstr{'ML'}\hlstd{)}
\hlcom{## fit of the alternative model}
\hlstd{lme.fit.a} \hlkwb{<-} \hlkwd{lme}\hlstd{(all.y}\hlopt{~}\hlstd{quant.fact}\hlopt{*}\hlstd{all.alg,} \hlkwc{random} \hlstd{= rnd.frm,}
\hlkwc{weights}\hlstd{=}\hlkwd{varIdent}\hlstd{(}\hlkwc{form}\hlstd{=}\hlopt{~}\hlnum{1}\hlopt{|}\hlstd{quant.fact),}
\hlkwc{corr}\hlstd{=}\hlkwd{corSymm}\hlstd{(}\hlkwc{form}\hlstd{=}\hlopt{~}\hlkwd{as.numeric}\hlstd{(quant.fact)}\hlopt{|}\hlstd{all.comp}\hlopt{/}\hlstd{all.rep),}
\hlkwc{data}\hlstd{=univ.analyse.data,}
\hlkwc{control}\hlstd{=alg.ctrl,} \hlkwc{method}\hlstd{=}\hlstr{'ML'}\hlstd{)}
\hlcom{## likelihood ratio test and summary of fit}
\hlkwd{anova}\hlstd{(lme.fit.n, lme.fit.a)}
\end{alltt}
\end{kframe}
\end{knitrout}
\subsection{Metric and force field specific analyses}
Having shown by multivariate analysis that force fields lead to
significant variation in the assessment metrics we will now prepare a
more detailed assessment. To gain insight about interactions between
force fields and assessment metrics we will now switch to analyses of
univariate metrics which were previously transformed to approximate
Gaussian residuals. As mentioned above the nesting of replicate
simulation runs within compounds require this analysis to be carried
out with linear mixed effects models. By keeping the metrics separate,
adjustments for metric dependent residual variances and correlations
between metrics are not required. To considerably simplify analysis we
switch to a univariate mixed effects analysis with the lme4 package
\cite{Bates+etal:2015} for modeling and the emsmeans package
\cite{Lenth+etal:2019} for assessing the binary comparisons between
force fields. The planned univariate assessments consist of several
significance tests. The p-values are thus adjusted for multiple
testing using the R p.adjust function and the Benjamini \& Yekutieli
FDR approach \cite{Benjamini+Yekutieli:2001}. The code fragments below
illustrate analysis of RMSDs. The result tables are obtained by
looping such code over all metrics (not shown but available in the
accompanying source file ff\_validation.Rnw).
\subsubsection{Metric specific null model with lme4}
The null model considers only the random effects all.comp (proteins)
and replicate simulation run which determines the within compound
residuals.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlcom{## the lme4 package for linear mixed modeling}
\hlkwd{library}\hlstd{(lme4)}
\hlkwd{library}\hlstd{(emmeans)}
\hlcom{## we illustrate RMSD as an example}
\hlstd{rw.sel} \hlkwb{<-} \hlstd{univ.analyse.data}\hlopt{$}\hlstd{quant.fact}\hlopt{==}\hlstr{"RMSD.ADJ"}
\hlstd{fit.n} \hlkwb{<-} \hlkwd{lmer}\hlstd{(all.y}\hlopt{~}\hlstd{(}\hlnum{1}\hlopt{|}\hlstd{all.comp),} \hlkwc{data}\hlstd{=univ.analyse.data[rw.sel,])}
\end{alltt}
\end{kframe}
\end{knitrout}
\subsubsection{Metric specific alternative model and ANOVA}
The alternative more complex model considers force field as fixed
effect. Applying the anova function to both fits contrasts the
goodness of fit with the increased complexity by a likelihood ratio
test. To allow us to correct for multiple testing, we have to extract
the p-value from the returned object.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlstd{fit.a} \hlkwb{<-} \hlkwd{lmer}\hlstd{(all.y}\hlopt{~}\hlstd{all.alg}\hlopt{+}\hlstd{(}\hlnum{1}\hlopt{|}\hlstd{all.comp),} \hlkwc{data}\hlstd{= univ.analyse.data[rw.sel,])}
\hlstd{res} \hlkwb{<-} \hlkwd{anova}\hlstd{(fit.n, fit.a)}
\hlstd{p.value} \hlkwb{<-} \hlstd{res[[}\hlstr{"Pr(>Chisq)"}\hlstd{]][}\hlnum{2}\hlstd{]}
\end{alltt}
\end{kframe}
\end{knitrout}
If we may assess the improvement by the alternative model as
statistically significant, a more detailed inspection of force field
induced differences with pairwise comparisons makes sense.
\subsubsection{Pairwise contrasts with the emmeans package}
The emmeans package is the preferred package for assessments whether
contrasts deviate significantly from zero. Since we are interested in
assessing all pairwise contrasts between algorithms for significance,
we may use the standard emmeans workflow. To control the overall
false positive rate for multiple testing, the p-values of all
comparisons are finally adjusted using the Benjamini \& Yekutieli FDR
approach as implemented in the standard R p.adjust function.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{alltt}
\hlcom{## next step: analysis of pairwise comparisons we do not adjust }
\hlcom{## as we do that for all pairwise comparisons together.}
\hlstd{res} \hlkwb{<-} \hlkwd{emmeans}\hlstd{(fit.a,} \hlkwd{list}\hlstd{(pairwise} \hlopt{~} \hlstd{all.alg),} \hlkwc{adjust} \hlstd{=} \hlstr{"none"}\hlstd{)}
\hlcom{## convert the emmeans result to a dataframe}
\hlstd{pdtab} \hlkwb{<-} \hlkwd{as.data.frame}\hlstd{(res}\hlopt{$}\hlstr{"pairwise differences of all.alg"}\hlstd{)}
\hlcom{## extract comparisons between force fields as strings}
\hlstd{all.pairs} \hlkwb{<-} \hlkwd{levels}\hlstd{(pdtab}\hlopt{$}\hlstd{contrast)[pdtab}\hlopt{$}\hlstd{contrast]}
\hlcom{## and the corresponding p-values}
\hlstd{all.pmp} \hlkwb{<-} \hlstd{pdtab}\hlopt{$}\hlstd{p.value}
\hlstd{BY.adj} \hlkwb{<-} \hlkwd{p.adjust}\hlstd{(all.pmp,} \hlkwc{method}\hlstd{=}\hlstr{"BY"}\hlstd{)}
\end{alltt}
\end{kframe}
\end{knitrout}
\section{Results}
\subsection{Summary statistics of raw data}
%\begin{center}
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{verbatim}
## Hbond_bb_0.25_120 Hbond_native_bb_0.25_120 SASA_polar SASA_nonpolar
## Min. : 4.00 Min. : 1.00 Min. : 9.316 Min. : 4.584
## 1st Qu.: 29.00 1st Qu.: 22.75 1st Qu.:25.584 1st Qu.: 7.588
## Median : 45.00 Median : 34.50 Median :32.255 Median : 9.604
## Mean : 51.33 Mean : 40.17 Mean :36.121 Mean :10.183
## 3rd Qu.: 67.00 3rd Qu.: 51.00 3rd Qu.:44.090 3rd Qu.:11.431
## Max. :169.00 Max. :141.00 Max. :96.359 Max. :22.722
##
## Rgyr A_Helix B_Strand ThreeTen_Helix
## Min. :0.723 Min. : 0.00 Min. : 0.0 Min. : 0.000
## 1st Qu.:1.102 1st Qu.: 5.00 1st Qu.: 8.0 1st Qu.: 2.000
## Median :1.278 Median : 12.00 Median : 22.0 Median : 3.000
## Mean :1.297 Mean : 23.68 Mean : 25.9 Mean : 3.107
## 3rd Qu.:1.434 3rd Qu.: 32.25 3rd Qu.: 37.5 3rd Qu.: 3.000
## Max. :2.077 Max. :113.00 Max. :123.0 Max. :12.000
##
## Jvalue NOE_repl_merged RMSD.ADJ B_Bridge
## Min. :1.20 Min. :0.0020 Min. :0.07371 Min. : 0.000
## 1st Qu.:1.70 1st Qu.:0.0090 1st Qu.:0.12072 1st Qu.: 1.000
## Median :1.70 Median :0.0120 Median :0.16293 Median : 2.000
## Mean :1.83 Mean :0.0253 Mean :0.18371 Mean : 2.761
## 3rd Qu.:2.00 3rd Qu.:0.0328 3rd Qu.:0.21013 3rd Qu.: 4.000
## Max. :3.00 Max. :0.0860 Max. :0.88296 Max. :13.000
## NA's :506 NA's :506
## Pi_Helix
## Min. : 0.000
## 1st Qu.: 0.000
## Median : 1.000
## Mean : 1.245
## 3rd Qu.: 2.000
## Max. :10.000
##
\end{verbatim}
\end{kframe}
\end{knitrout}
%\end{center}
\subsection{Box Cox transformed data}
The panel of box plots below provides a visualization of the
preprocessed sequence characteristics. Every panel shows five boxes
which illustrate the distribution of a particular sequence
characteristic for the force fields ``45A4'', ``53A6'', ``54A7'', and
``54A8''.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}
\includegraphics[width=\maxwidth]{figure/bp-chunk-1}
\end{knitrout}
\subsection{MANOVA and multivariate multilevel analysis}
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{verbatim}
## Model df AIC BIC logLik Test L.Ratio p-value
## lme.fit.n 1 195 5768.429 7080.093 -2689.215
## lme.fit.a 2 234 5206.833 6780.830 -2369.417 1 vs 2 639.5958 <.0001
\end{verbatim}
\end{kframe}
\end{knitrout}
The ANOVA output compares the empty model against the more complex
model which uses ``all.alg'' (representing force field) as
regressor. A strongly increased likelihood and far superior AIC and
BIC of the more complex model provide evidence that ``force field''
has a considerable effect on predicted sequence characteristics.
Leading for the likelihood ratio test to a p-value of $<0.0001$, the
differences are of very high statistical significance. The p-value
reported by the anova function follows common practice in statistics,
where small p-values are usually only reported as ``smaller than a
threshold''. The actual p-value from the likelihood ratio test is
$\mathrm{p-val}=1.088e-109$.
\section{Property and algorithm specific mixed model analysis}
After having concluded by a mixed effects regression analysis that the
multivariate metric vector depends significantly on force field, we
will now perform a more detailed analysis. We will to this end rely on
two analyses which assess within metric.
\begin{enumerate}
\item by a likelihood ratio test whether adding force field as
regressor leads to significant improvements over the empty (null)
model.
\item by formulating all ten pairwise contrasts, subsequent
significance analysis and multiple testing correction whether
differences between two force fields are statistically significant.
\end{enumerate}
The first stage of this fine grained analysis provides us thus with
twelve p-values which result from the per metric likelihood ratio
tests 1). The second stage of this analysis in 2) provides us across
all metrics and pairwise contrasts with $80$ p-values which assess
whether the respective pair of force fields leads for a particular
metric to significantly different expectations. To control the overall
false positive rate, we adjust the p-values with the Benjamini \&
Yekutieli FDR (BY) for multiple testing.
\begin{knitrout}
\definecolor{shadecolor}{rgb}{0.969, 0.969, 0.969}\color{fgcolor}\begin{kframe}
\begin{verbatim}
## nr pairs: 78
## Order in all.pairs and all.rw.pairs match in: 0 % cases.
## Order in all.pairs and all.dyt.pairs match in: 100 % cases.
## Properties : A_Helix B_Bridge B_Strand Hbond_bb_0.25_120 Hbond_native_bb_0.25_120 Jvalue NOE_repl_merged Pi_Helix Rgyr RMSD.ADJ SASA_nonpolar SASA_polar ThreeTen_Helix
## Raw p-values : 1.900596e-06 0.00622542 9.639084e-15 2.188943e-31 5.113798e-29 0.4009499 0.287061 0.2349878 1.117707e-25 5.460412e-11 9.341772e-13 1.120728e-40 0.004307733
## BH adjusted : 3.088469e-06 0.008093046 2.506162e-14 1.422813e-30 2.215979e-28 0.4009499 0.3109828 0.2777128 3.632549e-25 1.014076e-10 2.024051e-12 1.456947e-39 0.006222282
## BY adjusted : 9.821744e-06 0.02573697 7.96993e-14 4.524735e-30 7.04711e-28 1 0.9889668 0.8831639 1.155199e-24 3.224899e-10 6.436751e-12 4.633285e-39 0.01978769
\end{verbatim}
\end{kframe}
\end{knitrout}
\subsection{Significance of metric specific likelihood ratio tests}
% kable_styling(latex_options = c("hold_position", "striped", "scale_down")) %>%
\begin{center}
\begin{table}[!h]
\caption{\label{tab:unnamed-chunk-18}Significance of dependency of univariate metric values on force field}
\centering
\resizebox{\linewidth}{!}{
\begin{tabular}[t]{l|l|l}
\hline
metric & raw.pval & BY.adj\\
\hline
\cellcolor{gray!6}{A\_Helix} & \cellcolor{gray!6}{1.90e-06 (***)} & \cellcolor{gray!6}{9.82e-06 (***)}\\
\hline
B\_Bridge & 6.23e-03 (**) & 2.57e-02 (*)\\
\hline
\cellcolor{gray!6}{B\_Strand} & \cellcolor{gray!6}{9.64e-15 (***)} & \cellcolor{gray!6}{7.97e-14 (***)}\\
\hline
Hbond\_bb\_0.25\_120 & 2.19e-31 (***) & 4.52e-30 (***)\\
\hline
\cellcolor{gray!6}{Hbond\_native\_bb\_0.25\_120} & \cellcolor{gray!6}{5.11e-29 (***)} & \cellcolor{gray!6}{7.05e-28 (***)}\\
\hline
Jvalue & 4.01e-01 ( ) & 1.00e+00 ( )\\
\hline
\cellcolor{gray!6}{NOE\_repl\_merged} & \cellcolor{gray!6}{2.87e-01 ( )} & \cellcolor{gray!6}{9.89e-01 ( )}\\
\hline
Pi\_Helix & 2.35e-01 ( ) & 8.83e-01 ( )\\
\hline
\cellcolor{gray!6}{Rgyr} & \cellcolor{gray!6}{1.12e-25 (***)} & \cellcolor{gray!6}{1.16e-24 (***)}\\
\hline
RMSD.ADJ & 5.46e-11 (***) & 3.22e-10 (***)\\
\hline
\cellcolor{gray!6}{SASA\_nonpolar} & \cellcolor{gray!6}{9.34e-13 (***)} & \cellcolor{gray!6}{6.44e-12 (***)}\\
\hline
SASA\_polar & 1.12e-40 (***) & 4.63e-39 (***)\\
\hline
\cellcolor{gray!6}{ThreeTen\_Helix} & \cellcolor{gray!6}{4.31e-03 (**)} & \cellcolor{gray!6}{1.98e-02 (*)}\\
\hline
\multicolumn{3}{l}{\textsuperscript{a} metric: name of analysed metric; raw.pval: raw p-vale assessing dependencies of metric values on force field for significance; BY.adj: Benjamini \&}\\
\multicolumn{3}{l}{Yekutieli adjusted raw p-values.}\\
\end{tabular}}
\end{table}
\end{center}
By analyzing the results table we conclude that except for the
Pi\_Helix counts, Jvalue and NOE, all other metrics depend
significantly on force field. The adjustment changes significance
levels but does not change our assessment regarding significance.
\subsection{Pairwise comparisons of force fields within metric}
The rows in the subsequent table denote certain binary contrasts. The
table columns contain information about the expected value of the
contrast and the standard error (a $95\%$ confidence interval). The
Benjamini \& Yekutieli adjusted significance levels assess whether the
respective metric (transformed values as illustrated in the box plots)
%\begin{tiny}
%% the following makes the column header diagonal
%% we also use a table footnote
% kable_styling(latex_options = c("hold_position", "striped", "scale_down")) %>%
% row_spec(0, angle = 65) %>%
\begin{center}
\begin{table}[!h]
\caption{\label{tab:unnamed-chunk-19}Binary contrasts between force fields\textsuperscript{a}}
\centering
\resizebox{\linewidth}{!}{
\begin{tabular}[t]{lccccccccccccc}
\toprule
\rotatebox{65}{ } & \rotatebox{65}{A\_Helix} & \rotatebox{65}{B\_Bridge} & \rotatebox{65}{B\_Strand} & \rotatebox{65}{Hbond\_bb\_0.25\_120} & \rotatebox{65}{Hbond\_native\_bb\_0.25\_120} & \rotatebox{65}{Jvalue} & \rotatebox{65}{NOE\_repl\_merged} & \rotatebox{65}{Pi\_Helix} & \rotatebox{65}{Rgyr} & \rotatebox{65}{RMSD.ADJ} & \rotatebox{65}{SASA\_nonpolar} & \rotatebox{65}{SASA\_polar} & \rotatebox{65}{ThreeTen\_Helix}\\
\midrule
\cellcolor{gray!6}{45A4 - 53A6} & \cellcolor{gray!6}{0.36 (***)} & \cellcolor{gray!6}{0.09 ( )} & \cellcolor{gray!6}{-0.13 ( )} & \cellcolor{gray!6}{0.03 ( )} & \cellcolor{gray!6}{-0.31 (**)} & \cellcolor{gray!6}{0.02 ( )} & \cellcolor{gray!6}{-0.05 ( )} & \cellcolor{gray!6}{-0.06 ( )} & \cellcolor{gray!6}{-0.03 (***)} & \cellcolor{gray!6}{-0.07 ( )} & \cellcolor{gray!6}{-0.07 (***)} & \cellcolor{gray!6}{-0.19 (***)} & \cellcolor{gray!6}{0.08 ( )}\\
45A4 - 54A7 & 0.00 ( ) & 0.16 (*) & 0.46 (***) & -0.50 (***) & -0.75 (***) & 0.11 ( ) & -0.02 ( ) & 0.12 ( ) & -0.02 (***) & 0.32 (**) & -0.08 (***) & -0.16 (***) & -0.20 ( )\\
\cellcolor{gray!6}{45A4 - 54A8} & \cellcolor{gray!6}{-0.07 ( )} & \cellcolor{gray!6}{0.18 (*)} & \cellcolor{gray!6}{0.45 (***)} & \cellcolor{gray!6}{-0.56 (***)} & \cellcolor{gray!6}{-0.89 (***)} & \cellcolor{gray!6}{0.13 ( )} & \cellcolor{gray!6}{0.03 ( )} & \cellcolor{gray!6}{0.16 ( )} & \cellcolor{gray!6}{-0.02 (***)} & \cellcolor{gray!6}{0.45 (***)} & \cellcolor{gray!6}{-0.07 (***)} & \cellcolor{gray!6}{-0.10 (***)} & \cellcolor{gray!6}{-0.10 ( )}\\
53A6 - 54A7 & -0.36 (***) & 0.07 ( ) & 0.59 (***) & -0.53 (***) & -0.44 (***) & 0.09 ( ) & 0.03 ( ) & 0.17 ( ) & 0.00 ( ) & 0.39 (***) & -0.00 ( ) & 0.02 ( ) & -0.28 (**)\\
\cellcolor{gray!6}{53A6 - 54A8} & \cellcolor{gray!6}{-0.43 (***)} & \cellcolor{gray!6}{0.09 ( )} & \cellcolor{gray!6}{0.58 (***)} & \cellcolor{gray!6}{-0.59 (***)} & \cellcolor{gray!6}{-0.58 (***)} & \cellcolor{gray!6}{0.11 ( )} & \cellcolor{gray!6}{0.08 ( )} & \cellcolor{gray!6}{0.21 ( )} & \cellcolor{gray!6}{0.00 ( )} & \cellcolor{gray!6}{0.52 (***)} & \cellcolor{gray!6}{0.00 ( )} & \cellcolor{gray!6}{0.09 (***)} & \cellcolor{gray!6}{-0.18 ( )}\\
\addlinespace
54A7 - 54A8 & -0.07 ( ) & 0.02 ( ) & -0.01 ( ) & -0.07 ( ) & -0.14 ( ) & 0.02 ( ) & 0.05 ( ) & 0.04 ( ) & 0.00 ( ) & 0.13 ( ) & 0.00 ( ) & 0.07 (***) & 0.10 ( )\\
\bottomrule
\multicolumn{14}{l}{\textsuperscript{a} Metrics are represented as expected value of the contrast ± standard error (95\% confidence) and an indication of significance with (***) → p-value <0.001, (**) → p-value <0.01, (*) → p-value <0.05 and (.) → p-value <0.1. The p-values are adjusted for multiple testing using the Benjamini \& Yekutieli FDR correction.}\\
\end{tabular}}
\end{table}
\end{center}
%\end{tiny}
\clearpage %% push out fload tables
\subsection{Pairwise assessments of simulation derived values}
\bf{Table S3:} Pairwise differences of protein characteristics between
force fields. Metrics are represented as expected value of the
contrast $\pm$ standard error ($95\%$ confidence) and an indication of
significance with (***) $\rightarrow$ p-value $< 0.001$, (**)
$\rightarrow$ p-value $<0.01$, (*) $\rightarrow$ p-value $<0.05$ and
(.) $\rightarrow$ p-value $<0.1$. Combinations of contrasts between
force fields and metrics which we find significant are highlighted in
blue.
\begin{center}
\begin{longtable}[t]{lccccc}
\caption{\label{tab:unnamed-chunk-19}Binary contrasts of protein characteristics}\\
\toprule
& contrast & metric & value & rawval & significance\\
\midrule
\cellcolor{gray!6}{1} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{blue}{A\_Helix}} & \cellcolor{gray!6}{\textcolor{blue}{0.36 ± 0.09}} & \cellcolor{gray!6}{\textcolor{blue}{1.26 ± 0.30}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
7 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{B\_Bridge} & \textcolor{black}{0.09 ± 0.06} & \textcolor{black}{0.18 ± 0.09} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{13} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{black}{B\_Strand}} & \cellcolor{gray!6}{\textcolor{black}{-0.13 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{-0.43 ± 0.21}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
19 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{Hbond\_bb\_0.25\_120} & \textcolor{black}{0.03 ± 0.06} & \textcolor{black}{0.13 ± 0.29} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{25} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_native\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.31 ± 0.08}} & \cellcolor{gray!6}{\textcolor{blue}{-1.26 ± 0.35}} & \cellcolor{gray!6}{\textcolor{black}{(**)}}\\
31 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{Jvalue} & \textcolor{black}{0.02 ± 0.09} & \textcolor{black}{0.03 ± 0.07} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{37} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{black}{NOE\_repl\_merged}} & \cellcolor{gray!6}{\textcolor{black}{-0.05 ± 0.05}} & \cellcolor{gray!6}{\textcolor{black}{-0.01 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
43 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{Pi\_Helix} & \textcolor{black}{-0.06 ± 0.12} & \textcolor{black}{-0.09 ± 0.13} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{49} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{blue}{Rgyr}} & \cellcolor{gray!6}{\textcolor{blue}{-0.03 ± 0.00}} & \cellcolor{gray!6}{\textcolor{blue}{-0.03 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
55 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{RMSD.ADJ} & \textcolor{black}{-0.07 ± 0.09} & \textcolor{black}{-0.02 ± 0.01} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{61} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{blue}{SASA\_nonpolar}} & \cellcolor{gray!6}{\textcolor{blue}{-0.07 ± 0.01}} & \cellcolor{gray!6}{\textcolor{blue}{-0.54 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
67 & \textcolor{blue}{45A4 - 53A6} & \textcolor{blue}{SASA\_polar} & \textcolor{blue}{-0.19 ± 0.01} & \textcolor{blue}{-1.56 ± 0.12} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{73} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{black}{ThreeTen\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{0.08 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{0.10 ± 0.11}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
2 & \textcolor{black}{45A4 - 54A7} & \textcolor{black}{A\_Helix} & \textcolor{black}{0.00 ± 0.08} & \textcolor{black}{-0.42 ± 0.29} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{8} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{B\_Bridge}} & \cellcolor{gray!6}{\textcolor{blue}{0.16 ± 0.06}} & \cellcolor{gray!6}{\textcolor{blue}{0.20 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(*)}}\\
14 & \textcolor{blue}{45A4 - 54A7} & \textcolor{blue}{B\_Strand} & \textcolor{blue}{0.46 ± 0.08} & \textcolor{blue}{0.94 ± 0.20} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{20} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.50 ± 0.06}} & \cellcolor{gray!6}{\textcolor{blue}{-2.46 ± 0.28}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
26 & \textcolor{blue}{45A4 - 54A7} & \textcolor{blue}{Hbond\_native\_bb\_0.25\_120} & \textcolor{blue}{-0.75 ± 0.08} & \textcolor{blue}{-3.12 ± 0.34} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{32} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{Jvalue}} & \cellcolor{gray!6}{\textcolor{black}{0.11 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{0.09 ± 0.07}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
38 & \textcolor{black}{45A4 - 54A7} & \textcolor{black}{NOE\_repl\_merged} & \textcolor{black}{-0.02 ± 0.05} & \textcolor{black}{-0.00 ± 0.00} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{44} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{Pi\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{0.12 ± 0.11}} & \cellcolor{gray!6}{\textcolor{black}{0.13 ± 0.13}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
50 & \textcolor{blue}{45A4 - 54A7} & \textcolor{blue}{Rgyr} & \textcolor{blue}{-0.02 ± 0.00} & \textcolor{blue}{-0.03 ± 0.00} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{56} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{RMSD.ADJ}} & \cellcolor{gray!6}{\textcolor{blue}{0.32 ± 0.08}} & \cellcolor{gray!6}{\textcolor{blue}{0.01 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{(**)}}\\
62 & \textcolor{blue}{45A4 - 54A7} & \textcolor{blue}{SASA\_nonpolar} & \textcolor{blue}{-0.08 ± 0.01} & \textcolor{blue}{-0.53 ± 0.09} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{68} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{SASA\_polar}} & \cellcolor{gray!6}{\textcolor{blue}{-0.16 ± 0.01}} & \cellcolor{gray!6}{\textcolor{blue}{-1.35 ± 0.12}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
74 & \textcolor{black}{45A4 - 54A7} & \textcolor{black}{ThreeTen\_Helix} & \textcolor{black}{-0.20 ± 0.08} & \textcolor{black}{-0.29 ± 0.11} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{3} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{A\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{-0.07 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{-0.67 ± 0.29}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
9 & \textcolor{blue}{45A4 - 54A8} & \textcolor{blue}{B\_Bridge} & \textcolor{blue}{0.18 ± 0.06} & \textcolor{blue}{0.22 ± 0.08} & \textcolor{black}{(*)}\\
\cellcolor{gray!6}{15} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{B\_Strand}} & \cellcolor{gray!6}{\textcolor{blue}{0.45 ± 0.08}} & \cellcolor{gray!6}{\textcolor{blue}{0.88 ± 0.20}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
21 & \textcolor{blue}{45A4 - 54A8} & \textcolor{blue}{Hbond\_bb\_0.25\_120} & \textcolor{blue}{-0.56 ± 0.06} & \textcolor{blue}{-2.75 ± 0.28} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{27} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_native\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.89 ± 0.08}} & \cellcolor{gray!6}{\textcolor{blue}{-3.66 ± 0.34}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
33 & \textcolor{black}{45A4 - 54A8} & \textcolor{black}{Jvalue} & \textcolor{black}{0.13 ± 0.09} & \textcolor{black}{0.11 ± 0.07} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{39} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{NOE\_repl\_merged}} & \cellcolor{gray!6}{\textcolor{black}{0.03 ± 0.05}} & \cellcolor{gray!6}{\textcolor{black}{-0.00 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
45 & \textcolor{black}{45A4 - 54A8} & \textcolor{black}{Pi\_Helix} & \textcolor{black}{0.16 ± 0.11} & \textcolor{black}{0.21 ± 0.13} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{51} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{Rgyr}} & \cellcolor{gray!6}{\textcolor{blue}{-0.02 ± 0.00}} & \cellcolor{gray!6}{\textcolor{blue}{-0.02 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
57 & \textcolor{blue}{45A4 - 54A8} & \textcolor{blue}{RMSD.ADJ} & \textcolor{blue}{0.45 ± 0.08} & \textcolor{blue}{0.02 ± 0.01} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{63} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{SASA\_nonpolar}} & \cellcolor{gray!6}{\textcolor{blue}{-0.07 ± 0.01}} & \cellcolor{gray!6}{\textcolor{blue}{-0.50 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
69 & \textcolor{blue}{45A4 - 54A8} & \textcolor{blue}{SASA\_polar} & \textcolor{blue}{-0.10 ± 0.01} & \textcolor{blue}{-0.79 ± 0.12} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{75} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{ThreeTen\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{-0.10 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{-0.17 ± 0.11}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
4 & \textcolor{blue}{53A6 - 54A7} & \textcolor{blue}{A\_Helix} & \textcolor{blue}{-0.36 ± 0.08} & \textcolor{blue}{-1.68 ± 0.29} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{10} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{B\_Bridge}} & \cellcolor{gray!6}{\textcolor{black}{0.07 ± 0.06}} & \cellcolor{gray!6}{\textcolor{black}{0.01 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
16 & \textcolor{blue}{53A6 - 54A7} & \textcolor{blue}{B\_Strand} & \textcolor{blue}{0.59 ± 0.08} & \textcolor{blue}{1.38 ± 0.20} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{22} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.53 ± 0.06}} & \cellcolor{gray!6}{\textcolor{blue}{-2.58 ± 0.28}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
28 & \textcolor{blue}{53A6 - 54A7} & \textcolor{blue}{Hbond\_native\_bb\_0.25\_120} & \textcolor{blue}{-0.44 ± 0.08} & \textcolor{blue}{-1.86 ± 0.34} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{34} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{Jvalue}} & \cellcolor{gray!6}{\textcolor{black}{0.09 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{0.06 ± 0.07}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
40 & \textcolor{black}{53A6 - 54A7} & \textcolor{black}{NOE\_repl\_merged} & \textcolor{black}{0.03 ± 0.04} & \textcolor{black}{0.00 ± 0.00} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{46} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{Pi\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{0.17 ± 0.11}} & \cellcolor{gray!6}{\textcolor{black}{0.22 ± 0.13}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
52 & \textcolor{black}{53A6 - 54A7} & \textcolor{black}{Rgyr} & \textcolor{black}{0.00 ± 0.00} & \textcolor{black}{0.00 ± 0.00} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{58} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{RMSD.ADJ}} & \cellcolor{gray!6}{\textcolor{blue}{0.39 ± 0.08}} & \cellcolor{gray!6}{\textcolor{blue}{0.03 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
64 & \textcolor{black}{53A6 - 54A7} & \textcolor{black}{SASA\_nonpolar} & \textcolor{black}{-0.00 ± 0.01} & \textcolor{black}{0.01 ± 0.09} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{70} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{SASA\_polar}} & \cellcolor{gray!6}{\textcolor{black}{0.02 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{0.22 ± 0.12}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
76 & \textcolor{blue}{53A6 - 54A7} & \textcolor{blue}{ThreeTen\_Helix} & \textcolor{blue}{-0.28 ± 0.08} & \textcolor{blue}{-0.39 ± 0.11} & \textcolor{black}{(**)}\\
\cellcolor{gray!6}{5} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{A\_Helix}} & \cellcolor{gray!6}{\textcolor{blue}{-0.43 ± 0.08}} & \cellcolor{gray!6}{\textcolor{blue}{-1.94 ± 0.29}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
11 & \textcolor{black}{53A6 - 54A8} & \textcolor{black}{B\_Bridge} & \textcolor{black}{0.09 ± 0.06} & \textcolor{black}{0.04 ± 0.08} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{17} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{B\_Strand}} & \cellcolor{gray!6}{\textcolor{blue}{0.58 ± 0.08}} & \cellcolor{gray!6}{\textcolor{blue}{1.31 ± 0.20}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
23 & \textcolor{blue}{53A6 - 54A8} & \textcolor{blue}{Hbond\_bb\_0.25\_120} & \textcolor{blue}{-0.59 ± 0.06} & \textcolor{blue}{-2.88 ± 0.28} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{29} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_native\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.58 ± 0.08}} & \cellcolor{gray!6}{\textcolor{blue}{-2.40 ± 0.34}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
35 & \textcolor{black}{53A6 - 54A8} & \textcolor{black}{Jvalue} & \textcolor{black}{0.11 ± 0.09} & \textcolor{black}{0.08 ± 0.07} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{41} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{NOE\_repl\_merged}} & \cellcolor{gray!6}{\textcolor{black}{0.08 ± 0.04}} & \cellcolor{gray!6}{\textcolor{black}{0.00 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
47 & \textcolor{black}{53A6 - 54A8} & \textcolor{black}{Pi\_Helix} & \textcolor{black}{0.21 ± 0.11} & \textcolor{black}{0.30 ± 0.13} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{53} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{Rgyr}} & \cellcolor{gray!6}{\textcolor{black}{0.00 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{0.01 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
59 & \textcolor{blue}{53A6 - 54A8} & \textcolor{blue}{RMSD.ADJ} & \textcolor{blue}{0.52 ± 0.08} & \textcolor{blue}{0.04 ± 0.01} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{65} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{SASA\_nonpolar}} & \cellcolor{gray!6}{\textcolor{black}{0.00 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{0.04 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
71 & \textcolor{blue}{53A6 - 54A8} & \textcolor{blue}{SASA\_polar} & \textcolor{blue}{0.09 ± 0.01} & \textcolor{blue}{0.78 ± 0.12} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{77} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{ThreeTen\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{-0.18 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{-0.27 ± 0.11}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
6 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{A\_Helix} & \textcolor{black}{-0.07 ± 0.08} & \textcolor{black}{-0.26 ± 0.26} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{12} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{B\_Bridge}} & \cellcolor{gray!6}{\textcolor{black}{0.02 ± 0.05}} & \cellcolor{gray!6}{\textcolor{black}{0.02 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
18 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{B\_Strand} & \textcolor{black}{-0.01 ± 0.08} & \textcolor{black}{-0.06 ± 0.18} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{24} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{Hbond\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{black}{-0.07 ± 0.05}} & \cellcolor{gray!6}{\textcolor{black}{-0.29 ± 0.26}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
30 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{Hbond\_native\_bb\_0.25\_120} & \textcolor{black}{-0.14 ± 0.07} & \textcolor{black}{-0.54 ± 0.30} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{36} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{Jvalue}} & \cellcolor{gray!6}{\textcolor{black}{0.02 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{0.03 ± 0.07}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
42 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{NOE\_repl\_merged} & \textcolor{black}{0.05 ± 0.04} & \textcolor{black}{0.00 ± 0.00} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{48} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{Pi\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{0.04 ± 0.10}} & \cellcolor{gray!6}{\textcolor{black}{0.08 ± 0.11}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
54 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{Rgyr} & \textcolor{black}{0.00 ± 0.00} & \textcolor{black}{0.00 ± 0.00} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{60} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{RMSD.ADJ}} & \cellcolor{gray!6}{\textcolor{black}{0.13 ± 0.07}} & \cellcolor{gray!6}{\textcolor{black}{0.01 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
66 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{SASA\_nonpolar} & \textcolor{black}{0.00 ± 0.01} & \textcolor{black}{0.03 ± 0.08} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{72} & \cellcolor{gray!6}{\textcolor{blue}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{SASA\_polar}} & \cellcolor{gray!6}{\textcolor{blue}{0.07 ± 0.01}} & \cellcolor{gray!6}{\textcolor{blue}{0.56 ± 0.10}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
78 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{ThreeTen\_Helix} & \textcolor{black}{0.10 ± 0.07} & \textcolor{black}{0.12 ± 0.10} & \textcolor{black}{( )}\\
\bottomrule
\end{longtable}
\end{center}
%%>%
% add_footnote("Metrics are represented as expected value of the contrast \U00B1 standard error (95% confidence) and an indication of signifi%cance with (***) \U2192 p-value \textless 0.001, (**) \U2192 p-value <0.01, (*) \U2192 p-value <0.05 and (.) \U2192 p-value <0.1. Combination%s of contrasts between force fields and metrics which we find significant are highlighted in blue.")
\subsection{Pairwise assessments of simulation derived differences from crystal structure derived truth}
\bf{Table S4:} Pairwise assessments of the discrepancies of simulation
derived and experimentally validated protein characteristics.
Differences between simulation derived and structure based protein
characteristics are represented as expected value of the contrast
$\pm$ standard error ($95\%$ confidence) and an indication of
significance with (***) $\rightarrow$ p-value $< 0.001$, (**)
$\rightarrow$ p-value $<0.01$, (*) $\rightarrow$ p-value $<0.05$ and
(.) $\rightarrow$ p-value $<0.1$. Combinations of contrasts between
force fields and metrics which we find significant are highlighted in
blue. To put these results into relation with table S1, we note that
the results reported in table S2 will in general differ in p-vale and
sign and absolute value of the expected contrast value from those in
table S1. The exact same result will however be observed if the
crystal derived ``truth'' is {\it smaller} than the simulation derived
characteristics obtained with both force fields considered. The same
p-value and an expected contrast with identical absolute value and
alternating sign will be observed if the crystal derived ``truth'' is
{\it larger} than the simulation derived characteristics obtained with
both force fields considered.
A positive sign of the expected contrast value indicates that
the force field which enters the contrast positively is closer to the
crystal structure derived value. The alternating signs we observe in
dependence of metric for a particular pair of force fields indicate
that preference depends on the metrics considered. Unequivocal
preferences for a particular force field can thus in general not be
stated from these analyses.
\begin{center}
\begin{longtable}[t]{lcccc}
\caption{\label{tab:unnamed-chunk-19}Binary contrasts of protein characteristic differences in simulation and measurement}\\
\toprule
& contrast & metric & value & significance\\
\midrule
\cellcolor{gray!6}{1} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{blue}{A\_Helix}} & \cellcolor{gray!6}{\textcolor{blue}{0.36 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
7 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{B\_Bridge} & \textcolor{black}{0.09 ± 0.06} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{13} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{black}{B\_Strand}} & \cellcolor{gray!6}{\textcolor{black}{-0.13 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
19 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{Hbond\_bb\_0.25\_120} & \textcolor{black}{0.03 ± 0.06} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{25} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_native\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.31 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(**)}}\\
31 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{Jvalue} & \textcolor{black}{0.02 ± 0.09} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{37} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{black}{NOE\_repl\_merged}} & \cellcolor{gray!6}{\textcolor{black}{-0.05 ± 0.05}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
43 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{Pi\_Helix} & \textcolor{black}{-0.06 ± 0.12} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{49} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{blue}{Rgyr}} & \cellcolor{gray!6}{\textcolor{blue}{-0.02 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
55 & \textcolor{black}{45A4 - 53A6} & \textcolor{black}{RMSD.ADJ} & \textcolor{black}{-0.07 ± 0.09} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{61} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{blue}{SASA\_nonpolar}} & \cellcolor{gray!6}{\textcolor{blue}{-0.06 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
67 & \textcolor{blue}{45A4 - 53A6} & \textcolor{blue}{SASA\_polar} & \textcolor{blue}{-0.13 ± 0.02} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{73} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 53A6}} & \cellcolor{gray!6}{\textcolor{black}{ThreeTen\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{0.08 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
2 & \textcolor{black}{45A4 - 54A7} & \textcolor{black}{A\_Helix} & \textcolor{black}{0.00 ± 0.08} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{8} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{B\_Bridge}} & \cellcolor{gray!6}{\textcolor{blue}{0.16 ± 0.06}} & \cellcolor{gray!6}{\textcolor{black}{(*)}}\\
14 & \textcolor{blue}{45A4 - 54A7} & \textcolor{blue}{B\_Strand} & \textcolor{blue}{0.47 ± 0.08} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{20} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.51 ± 0.06}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
26 & \textcolor{blue}{45A4 - 54A7} & \textcolor{blue}{Hbond\_native\_bb\_0.25\_120} & \textcolor{blue}{-0.77 ± 0.08} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{32} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{Jvalue}} & \cellcolor{gray!6}{\textcolor{black}{0.12 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
38 & \textcolor{black}{45A4 - 54A7} & \textcolor{black}{NOE\_repl\_merged} & \textcolor{black}{-0.02 ± 0.05} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{44} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{Pi\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{0.12 ± 0.11}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
50 & \textcolor{blue}{45A4 - 54A7} & \textcolor{blue}{Rgyr} & \textcolor{blue}{-0.02 ± 0.00} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{56} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{RMSD.ADJ}} & \cellcolor{gray!6}{\textcolor{blue}{0.32 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(**)}}\\
62 & \textcolor{blue}{45A4 - 54A7} & \textcolor{blue}{SASA\_nonpolar} & \textcolor{blue}{-0.06 ± 0.01} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{68} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{SASA\_polar}} & \cellcolor{gray!6}{\textcolor{blue}{-0.11 ± 0.02}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
74 & \textcolor{black}{45A4 - 54A7} & \textcolor{black}{ThreeTen\_Helix} & \textcolor{black}{-0.20 ± 0.08} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{3} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{A\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{-0.07 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
9 & \textcolor{blue}{45A4 - 54A8} & \textcolor{blue}{B\_Bridge} & \textcolor{blue}{0.18 ± 0.06} & \textcolor{black}{(*)}\\
\cellcolor{gray!6}{15} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{B\_Strand}} & \cellcolor{gray!6}{\textcolor{blue}{0.45 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
21 & \textcolor{blue}{45A4 - 54A8} & \textcolor{blue}{Hbond\_bb\_0.25\_120} & \textcolor{blue}{-0.57 ± 0.06} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{27} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_native\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.90 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
33 & \textcolor{black}{45A4 - 54A8} & \textcolor{black}{Jvalue} & \textcolor{black}{0.14 ± 0.09} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{39} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{NOE\_repl\_merged}} & \cellcolor{gray!6}{\textcolor{black}{0.03 ± 0.05}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
45 & \textcolor{black}{45A4 - 54A8} & \textcolor{black}{Pi\_Helix} & \textcolor{black}{0.16 ± 0.11} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{51} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{Rgyr}} & \cellcolor{gray!6}{\textcolor{blue}{-0.02 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
57 & \textcolor{blue}{45A4 - 54A8} & \textcolor{blue}{RMSD.ADJ} & \textcolor{blue}{0.45 ± 0.08} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{63} & \cellcolor{gray!6}{\textcolor{blue}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{SASA\_nonpolar}} & \cellcolor{gray!6}{\textcolor{blue}{-0.04 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{(**)}}\\
69 & \textcolor{blue}{45A4 - 54A8} & \textcolor{blue}{SASA\_polar} & \textcolor{blue}{-0.08 ± 0.02} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{75} & \cellcolor{gray!6}{\textcolor{black}{45A4 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{ThreeTen\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{-0.10 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
4 & \textcolor{blue}{53A6 - 54A7} & \textcolor{blue}{A\_Helix} & \textcolor{blue}{-0.36 ± 0.08} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{10} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{B\_Bridge}} & \cellcolor{gray!6}{\textcolor{black}{0.07 ± 0.06}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
16 & \textcolor{blue}{53A6 - 54A7} & \textcolor{blue}{B\_Strand} & \textcolor{blue}{0.60 ± 0.08} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{22} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.54 ± 0.06}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
28 & \textcolor{blue}{53A6 - 54A7} & \textcolor{blue}{Hbond\_native\_bb\_0.25\_120} & \textcolor{blue}{-0.46 ± 0.08} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{34} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{Jvalue}} & \cellcolor{gray!6}{\textcolor{black}{0.09 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
40 & \textcolor{black}{53A6 - 54A7} & \textcolor{black}{NOE\_repl\_merged} & \textcolor{black}{0.03 ± 0.04} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{46} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{Pi\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{0.18 ± 0.11}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
52 & \textcolor{black}{53A6 - 54A7} & \textcolor{black}{Rgyr} & \textcolor{black}{0.00 ± 0.00} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{58} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{blue}{RMSD.ADJ}} & \cellcolor{gray!6}{\textcolor{blue}{0.39 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
64 & \textcolor{black}{53A6 - 54A7} & \textcolor{black}{SASA\_nonpolar} & \textcolor{black}{-0.01 ± 0.01} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{70} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A7}} & \cellcolor{gray!6}{\textcolor{black}{SASA\_polar}} & \cellcolor{gray!6}{\textcolor{black}{0.02 ± 0.02}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
76 & \textcolor{blue}{53A6 - 54A7} & \textcolor{blue}{ThreeTen\_Helix} & \textcolor{blue}{-0.28 ± 0.08} & \textcolor{black}{(**)}\\
\cellcolor{gray!6}{5} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{A\_Helix}} & \cellcolor{gray!6}{\textcolor{blue}{-0.43 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
11 & \textcolor{black}{53A6 - 54A8} & \textcolor{black}{B\_Bridge} & \textcolor{black}{0.09 ± 0.06} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{17} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{B\_Strand}} & \cellcolor{gray!6}{\textcolor{blue}{0.58 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
23 & \textcolor{blue}{53A6 - 54A8} & \textcolor{blue}{Hbond\_bb\_0.25\_120} & \textcolor{blue}{-0.60 ± 0.06} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{29} & \cellcolor{gray!6}{\textcolor{blue}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{blue}{Hbond\_native\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{blue}{-0.59 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{(***)}}\\
35 & \textcolor{black}{53A6 - 54A8} & \textcolor{black}{Jvalue} & \textcolor{black}{0.12 ± 0.09} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{41} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{NOE\_repl\_merged}} & \cellcolor{gray!6}{\textcolor{black}{0.08 ± 0.04}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
47 & \textcolor{black}{53A6 - 54A8} & \textcolor{black}{Pi\_Helix} & \textcolor{black}{0.21 ± 0.11} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{53} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{Rgyr}} & \cellcolor{gray!6}{\textcolor{black}{0.01 ± 0.00}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
59 & \textcolor{blue}{53A6 - 54A8} & \textcolor{blue}{RMSD.ADJ} & \textcolor{blue}{0.52 ± 0.08} & \textcolor{black}{(***)}\\
\cellcolor{gray!6}{65} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{SASA\_nonpolar}} & \cellcolor{gray!6}{\textcolor{black}{0.01 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
71 & \textcolor{blue}{53A6 - 54A8} & \textcolor{blue}{SASA\_polar} & \textcolor{blue}{0.05 ± 0.02} & \textcolor{black}{(*)}\\
\cellcolor{gray!6}{77} & \cellcolor{gray!6}{\textcolor{black}{53A6 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{ThreeTen\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{-0.18 ± 0.08}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
6 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{A\_Helix} & \textcolor{black}{-0.07 ± 0.08} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{12} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{B\_Bridge}} & \cellcolor{gray!6}{\textcolor{black}{0.02 ± 0.05}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
18 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{B\_Strand} & \textcolor{black}{-0.02 ± 0.08} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{24} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{Hbond\_bb\_0.25\_120}} & \cellcolor{gray!6}{\textcolor{black}{-0.06 ± 0.05}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
30 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{Hbond\_native\_bb\_0.25\_120} & \textcolor{black}{-0.14 ± 0.07} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{36} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{Jvalue}} & \cellcolor{gray!6}{\textcolor{black}{0.02 ± 0.09}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
42 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{NOE\_repl\_merged} & \textcolor{black}{0.05 ± 0.04} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{48} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{Pi\_Helix}} & \cellcolor{gray!6}{\textcolor{black}{0.04 ± 0.10}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
54 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{Rgyr} & \textcolor{black}{0.00 ± 0.00} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{60} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{RMSD.ADJ}} & \cellcolor{gray!6}{\textcolor{black}{0.13 ± 0.07}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
66 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{SASA\_nonpolar} & \textcolor{black}{0.02 ± 0.01} & \textcolor{black}{( )}\\
\cellcolor{gray!6}{72} & \cellcolor{gray!6}{\textcolor{black}{54A7 - 54A8}} & \cellcolor{gray!6}{\textcolor{black}{SASA\_polar}} & \cellcolor{gray!6}{\textcolor{black}{0.03 ± 0.01}} & \cellcolor{gray!6}{\textcolor{black}{( )}}\\
78 & \textcolor{black}{54A7 - 54A8} & \textcolor{black}{ThreeTen\_Helix} & \textcolor{black}{0.10 ± 0.07} & \textcolor{black}{( )}\\
\bottomrule
\end{longtable}
\end{center}
%%>%
% add_footnote("Differences between simulation derived and structure based protein characteristics are represented as expected value of the c%ontrast \U00B1 standard error (95% confidence) and an indication of significance with (***) \U2192 p-value \textless 0.001, (**) \U2192 p-val%ue <0.01, (*) \U2192 p-value <0.05 and (.) \U2192 p-value <0.1. Combinations of contrasts between force fields and metrics which we find sign%ificant are highlighted in blue. A positive sign of the expected contrast value indicates that the force field which enters the contrast posi%tively is closer to the crystal structure derived value. The alternating signs we observe in dependence of metric for a particular pair of fo%rce fields indicate that preference depends on the metrics considered. Unequivocal preferences for a particular force field can not be stated% from our analyses.")
%% \section{Discussion}
%% The results displayed above allow the conclusion that the reported
%% significance assessments of metric dependencies on force field are
%% difficult if we want to analyse fine grained improvements (e.g. force
%% fields 54A7 and 54A8). A larger number of simulated proteins is thus
%% imperative to assess subtle differences of force fields which have
%% similar effects. The requirement of larger sample size is illustrated
%% from the observation that J-coupling-constants, NOE but also Pi\_Helix
%% counts show no significant differences in pairwise comparisons. The
%% relatively smaller number of samples which allow for calculating
%% J-coupling-constants and NOE renders assessments of the more subtle
%% differences between other force fields difficult. The analysis
%% presented in this supplement suggests thus that large simulation
%% experiments are required to investigate subtle differences. Observing
%% that for any paricular pair of force fields assessed in Table S4 the
%% sign of the expected contrast value differs suggests furthermore that
%% a unequivocal preference of a particular force filed accross all
%% protein characteristics can not be stated. Assessments which allow for
%% preference statements among force fields depend on the availability of
%% rich simulation studies on larger numbers of compounds.
%%\bibliography{/home/psykacek/bibdir/peterdos.bib}
%%\bibliographystyle{apalike}
\begin{thebibliography}{}
\bibitem[Bates et~al., 2015]{Bates+etal:2015}
Bates, D., M{\"a}chler, M., Bolker, B., and Walker, S. (2015).
\newblock Fitting linear mixed-effects models using {lme4}.
\newblock {\em Journal of Statistical Software}, 67(1):1--48.
\bibitem[Benjamini and Yekutieli, 2001]{Benjamini+Yekutieli:2001}
Benjamini, Y. and Yekutieli, D. (2001).
\newblock The control of the false discovery rate in multiple testing under
dependency.
\newblock {\em Ann. Statist.}, 29(4):1165--1188.
\bibitem[Box and Cox, 1964]{Box+Cox:1964}
Box, G.~E.~P. and Cox, D.~R. (1964).
\newblock An analysis of transformations.
\newblock {\em Journal of the Royal Statistical Society. Series B},
26(2):211--252.
\bibitem[Carugo and Pongor, 2001]{Carugo+Pongor:2001}
Carugo, O. and Pongor, S. (2001).
\newblock {{A} normalized root-mean-square distance for comparing protein
three-dimensional structures}.
\newblock {\em Protein Sci.}, 10(7):1470--1473.
\bibitem[Fox and Weisberg, 2019]{Fox+Weisberg:2019}
Fox, J. and Weisberg, S. (2019).
\newblock {\em An {R} Companion to Applied Regression}.
\newblock Sage, Thousand Oaks {CA}, third edition.
\bibitem[Lenth et~al., 2019]{Lenth+etal:2019}
Lenth, R., Singmann, H., Love, J., Buerkner, P., and Herve, M. (2019).
\newblock Estimated marginal means, aka least-squares means.
\newblock Technical report, The University of Iowa.
\newblock URL [https://CRAN.R-project.org/package=emmeans].
\bibitem[Mood et~al., 1984]{Mood+etal:1984}
Mood, A., Franklin, F.~A., and Boes, D.~C. (1984).
\newblock {\em Introduction to the theory of statistics}.
\newblock McGraw-Hill, Auckland, 3 edition.
\bibitem[Pinheiro and Bates, 2000]{Pinheiro+Bates:2000}
Pinheiro, J.~C. and Bates, D.~M. (2000).
\newblock {\em Mixed-Effects Models in S and S-PLUS}.
\newblock Springer, New York.
\bibitem[Snijders and Boskers, 2012]{Snijders+Bosker:2012}
Snijders, T.~A.~B. and Boskers, R.~J. (2012).
\newblock {\em Multilevel Analysis: An Introduction to Basic and Advanced
Multilevel Modeling}.
\newblock Sage Publishers.
\bibitem[Villa et~al., 2007]{Villa+etal:2007}
Villa, A., Fan, H., Wassenaar, T., and Mark, A.~E. (2007).
\newblock {{H}ow sensitive are nanosecond molecular dynamics simulations of
proteins to changes in the force field?}
\newblock {\em J Phys Chem B}, 111(21):6015--6025.
\bibitem[Xie, 2014]{Xie:2014}
Xie, Y. (2014).
\newblock knitr: A comprehensive tool for reproducible research in {R}.
\newblock In Stodden, V., Leisch, F., and Peng, R.~D., editors, {\em
Implementing Reproducible Computational Research}. Chapman and Hall/CRC.
\newblock ISBN 978-1466561595.
\bibitem[Xie, 2015]{Xie:2015}
Xie, Y. (2015).
\newblock {\em Dynamic Documents with {R} and knitr}.
\newblock Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition.
\newblock ISBN 978-1498716963.
\end{thebibliography}
\end{document}
\section{Generating a table similar to table 3 in the paper}
\begin{center}
\begin{table}[!h]