Skip to content

Commit ca0bf7c

Browse files
author
Circle Ci
committed
doc updates [skip ci]
1 parent 15b4308 commit ca0bf7c

38 files changed

+92
-92
lines changed
Binary file not shown.
Binary file not shown.
24 Bytes
Loading
124 KB
Loading
970 Bytes
Loading

dev/_sources/auto_examples/plot_pc_alg.rst.txt

+3-3
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ are conditionally independent.
150150

151151
.. code-block:: none
152152
153-
Fitting causal models: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node x: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node y: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node z: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00<00:00, 1287.29it/s]
153+
Fitting causal models: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node x: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node y: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node z: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00<00:00, 1592.07it/s]
154154
x ... w
155155
0 0 ... 1
156156
1 1 ... 2
@@ -165,7 +165,7 @@ are conditionally independent.
165165
w [1, 2, 0]
166166
dtype: object
167167

168-
<graphviz.graphs.Digraph object at 0x7fedfa1b6d60>
168+
<graphviz.graphs.Digraph object at 0x7fb23ef1ca30>
169169

170170

171171

@@ -330,7 +330,7 @@ always a possibility that the CI test makes a mistake.
330330
331331
.. rst-class:: sphx-glr-timing
332332

333-
**Total running time of the script:** ( 0 minutes 2.464 seconds)
333+
**Total running time of the script:** ( 0 minutes 2.329 seconds)
334334

335335

336336
.. _sphx_glr_download_auto_examples_plot_pc_alg.py:

dev/_sources/auto_examples/plot_psifci_alg.rst.txt

+2-2
Original file line numberDiff line numberDiff line change
@@ -272,7 +272,7 @@ Figure 8 in :footcite:`Jaber2020causal`.
272272

273273
.. code-block:: none
274274
275-
There are 151 edges in the resulting PAG
275+
There are 155 edges in the resulting PAG
276276
277277
278278
@@ -347,7 +347,7 @@ Visualize the graph without the F-nodes
347347
348348
.. rst-class:: sphx-glr-timing
349349

350-
**Total running time of the script:** ( 3 minutes 39.587 seconds)
350+
**Total running time of the script:** ( 1 minutes 37.926 seconds)
351351

352352

353353
.. _sphx_glr_download_auto_examples_plot_psifci_alg.py:

dev/_sources/auto_examples/plot_score_alg.rst.txt

+2-2
Original file line numberDiff line numberDiff line change
@@ -187,7 +187,7 @@ This will then induce a causal graph, which we can visualize.
187187

188188
.. code-block:: none
189189
190-
Fitting causal models: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node x: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node y: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node z: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00<00:00, 1849.14it/s]
190+
Fitting causal models: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node x: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node y: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node z: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00<00:00, 1843.65it/s]
191191
x ... w
192192
0 0 ... 1
193193
1 1 ... 2
@@ -333,7 +333,7 @@ step, corresponding to the causal graph inferred by SCORE.
333333

334334
.. rst-class:: sphx-glr-timing
335335

336-
**Total running time of the script:** ( 0 minutes 0.583 seconds)
336+
**Total running time of the script:** ( 0 minutes 0.509 seconds)
337337

338338

339339
.. _sphx_glr_download_auto_examples_plot_score_alg.py:

dev/_sources/auto_examples/prior_know_score.rst.txt

+2-2
Original file line numberDiff line numberDiff line change
@@ -137,7 +137,7 @@ This will then induce a causal graph, which we can visualize.
137137

138138
.. code-block:: none
139139
140-
Fitting causal models: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node x: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node y: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node z: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00<00:00, 1859.18it/s]
140+
Fitting causal models: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node x: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node y: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node z: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 0%| | 0/4 [00:00<?, ?it/s] Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00<00:00, 1816.90it/s]
141141
x ... w
142142
0 0 ... 1
143143
1 1 ... 2
@@ -273,7 +273,7 @@ For a detailed example on order-based discovery approaches, see this
273273

274274
.. rst-class:: sphx-glr-timing
275275

276-
**Total running time of the script:** ( 0 minutes 0.886 seconds)
276+
**Total running time of the script:** ( 0 minutes 0.835 seconds)
277277

278278

279279
.. _sphx_glr_download_auto_examples_prior_know_score.py:

dev/auto_examples/plot_pc_alg.html

+3-3
Original file line numberDiff line numberDiff line change
@@ -379,7 +379,7 @@ <h2>Simulate some data<a class="headerlink" href="#simulate-some-data" title="Pe
379379
Fitting causal mechanism of node y: 0%| | 0/4 [00:00&lt;?, ?it/s]
380380
Fitting causal mechanism of node z: 0%| | 0/4 [00:00&lt;?, ?it/s]
381381
Fitting causal mechanism of node w: 0%| | 0/4 [00:00&lt;?, ?it/s]
382-
Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00&lt;00:00, 1287.29it/s]
382+
Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00&lt;00:00, 1592.07it/s]
383383
x ... w
384384
0 0 ... 1
385385
1 1 ... 2
@@ -394,7 +394,7 @@ <h2>Simulate some data<a class="headerlink" href="#simulate-some-data" title="Pe
394394
w [1, 2, 0]
395395
dtype: object
396396

397-
&lt;graphviz.graphs.Digraph object at 0x7fedfa1b6d60&gt;
397+
&lt;graphviz.graphs.Digraph object at 0x7fb23ef1ca30&gt;
398398
</pre></div>
399399
</div>
400400
</section>
@@ -488,7 +488,7 @@ <h2>Run structure learning algorithm<a class="headerlink" href="#run-structure-l
488488
<img src="../_images/sphx_glr_plot_pc_alg_002.png" srcset="../_images/sphx_glr_plot_pc_alg_002.png" alt="plot pc alg" class = "sphx-glr-single-img"/><div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>&#39;ci_cpdag.png&#39;
489489
</pre></div>
490490
</div>
491-
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 2.464 seconds)</p>
491+
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 2.329 seconds)</p>
492492
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-pc-alg-py">
493493
<div class="sphx-glr-download sphx-glr-download-python docutils container">
494494
<p><a class="reference download internal" download="" href="../_downloads/f1c5e835df0a73798ede9531ab050d9e/plot_pc_alg.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_pc_alg.py</span></code></a></p>

dev/auto_examples/plot_psifci_alg.html

+2-2
Original file line numberDiff line numberDiff line change
@@ -438,7 +438,7 @@ <h3>Analyze the results<a class="headerlink" href="#analyze-the-results" title="
438438
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;There are </span><span class="si">{</span><span class="nb">len</span><span class="p">(</span><a href="https://www.pywhy.org/pywhy-graphs/dev/generated/pywhy_graphs.networkx.MixedEdgeGraph.html#pywhy_graphs.networkx.MixedEdgeGraph.to_undirected" title="pywhy_graphs.networkx.MixedEdgeGraph.to_undirected" class="sphx-glr-backref-module-pywhy_graphs-networkx sphx-glr-backref-type-py-method"><span class="n">est_pag</span><span class="o">.</span><span class="n">to_undirected</span></a><span class="p">()</span><span class="o">.</span><span class="n">edges</span><span class="p">)</span><span class="si">}</span><span class="s2"> edges in the resulting PAG&quot;</span><span class="p">)</span>
439439
</pre></div>
440440
</div>
441-
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>There are 151 edges in the resulting PAG
441+
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>There are 155 edges in the resulting PAG
442442
</pre></div>
443443
</div>
444444
<p>Visualize the full graph including the F-node</p>
@@ -467,7 +467,7 @@ <h3>Analyze the results<a class="headerlink" href="#analyze-the-results" title="
467467
<img src="../_images/sphx_glr_plot_psifci_alg_003.png" srcset="../_images/sphx_glr_plot_psifci_alg_003.png" alt="plot psifci alg" class = "sphx-glr-single-img"/><div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>&#39;psi_pag.png&#39;
468468
</pre></div>
469469
</div>
470-
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 39.587 seconds)</p>
470+
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 37.926 seconds)</p>
471471
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-psifci-alg-py">
472472
<div class="sphx-glr-download sphx-glr-download-python docutils container">
473473
<p><a class="reference download internal" download="" href="../_downloads/75f223a7812556342f0f4b79148d944b/plot_psifci_alg.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_psifci_alg.py</span></code></a></p>

dev/auto_examples/plot_score_alg.html

+2-2
Original file line numberDiff line numberDiff line change
@@ -411,7 +411,7 @@ <h2>Simulate some data<a class="headerlink" href="#simulate-some-data" title="Pe
411411
Fitting causal mechanism of node y: 0%| | 0/4 [00:00&lt;?, ?it/s]
412412
Fitting causal mechanism of node z: 0%| | 0/4 [00:00&lt;?, ?it/s]
413413
Fitting causal mechanism of node w: 0%| | 0/4 [00:00&lt;?, ?it/s]
414-
Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00&lt;00:00, 1849.14it/s]
414+
Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00&lt;00:00, 1843.65it/s]
415415
x ... w
416416
0 0 ... 1
417417
1 1 ... 2
@@ -511,7 +511,7 @@ <h2>Summary<a class="headerlink" href="#summary" title="Permalink to this headin
511511
One is the fully connected graph associated to the inferred topological order
512512
<code class="docutils literal notranslate"><span class="pre">[z,</span> <span class="pre">x,</span> <span class="pre">y,</span> <span class="pre">w]</span></code> of the graph nodes. The other is the sparser graph after the pruning
513513
step, corresponding to the causal graph inferred by SCORE.</p>
514-
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.583 seconds)</p>
514+
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.509 seconds)</p>
515515
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-score-alg-py">
516516
<div class="sphx-glr-download sphx-glr-download-python docutils container">
517517
<p><a class="reference download internal" download="" href="../_downloads/7a0af3d327be5615defba776eff15f30/plot_score_alg.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_score_alg.py</span></code></a></p>

dev/auto_examples/prior_know_score.html

+2-2
Original file line numberDiff line numberDiff line change
@@ -372,7 +372,7 @@ <h2>Simulate some data<a class="headerlink" href="#simulate-some-data" title="Pe
372372
Fitting causal mechanism of node y: 0%| | 0/4 [00:00&lt;?, ?it/s]
373373
Fitting causal mechanism of node z: 0%| | 0/4 [00:00&lt;?, ?it/s]
374374
Fitting causal mechanism of node w: 0%| | 0/4 [00:00&lt;?, ?it/s]
375-
Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00&lt;00:00, 1859.18it/s]
375+
Fitting causal mechanism of node w: 100%|##########| 4/4 [00:00&lt;00:00, 1816.90it/s]
376376
x ... w
377377
0 0 ... 1
378378
1 1 ... 2
@@ -450,7 +450,7 @@ <h2>Summary<a class="headerlink" href="#summary" title="Permalink to this headin
450450
This example can be generalized to the case of <code class="docutils literal notranslate"><span class="pre">NoGAM</span></code>, <code class="docutils literal notranslate"><span class="pre">DAS</span></code>, and <code class="docutils literal notranslate"><span class="pre">CAM</span></code> methods.
451451
For a detailed example on order-based discovery approaches, see this
452452
<a class="reference internal" href="plot_score_alg.html#ex-score-algorithm"><span class="std std-ref">tutorial</span></a>.</p>
453-
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.886 seconds)</p>
453+
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.835 seconds)</p>
454454
<div class="sphx-glr-footer sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-prior-know-score-py">
455455
<div class="sphx-glr-download sphx-glr-download-python docutils container">
456456
<p><a class="reference download internal" download="" href="../_downloads/54fa84cb158e29731e39a59414e303a3/prior_know_score.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">prior_know_score.py</span></code></a></p>

dev/generated/dodiscover.ContextBuilder.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -801,7 +801,7 @@ <h1>dodiscover.ContextBuilder<a class="headerlink" href="#dodiscover-contextbuil
801801
nor <code class="docutils literal notranslate"><span class="pre">variables</span></code> is set, then it is presumed that <code class="docutils literal notranslate"><span class="pre">variables</span></code> consists
802802
of the columns of <code class="docutils literal notranslate"><span class="pre">data</span></code> and <code class="docutils literal notranslate"><span class="pre">latents</span></code> is the empty set.</p>
803803
</dd>
804-
<dt><strong>data</strong><span class="classifier"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Optional</span></code>[<a class="reference external" href="https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v3.0.0.dev0+1125.gc46fb76afa)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pd.DataFrame</span></code></a>]</span></dt><dd><p>the data to use for variable inference.</p>
804+
<dt><strong>data</strong><span class="classifier"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Optional</span></code>[<a class="reference external" href="https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v3.0.0.dev0+1132.ga5e812d86d)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pd.DataFrame</span></code></a>]</span></dt><dd><p>the data to use for variable inference.</p>
805805
</dd>
806806
</dl>
807807
</dd>

dev/generated/dodiscover.InterventionalContextBuilder.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -884,7 +884,7 @@ <h1>dodiscover.InterventionalContextBuilder<a class="headerlink" href="#dodiscov
884884
nor <code class="docutils literal notranslate"><span class="pre">variables</span></code> is set, then it is presumed that <code class="docutils literal notranslate"><span class="pre">variables</span></code> consists
885885
of the columns of <code class="docutils literal notranslate"><span class="pre">data</span></code> and <code class="docutils literal notranslate"><span class="pre">latents</span></code> is the empty set.</p>
886886
</dd>
887-
<dt><strong>data</strong><span class="classifier"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Optional</span></code>[<a class="reference external" href="https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v3.0.0.dev0+1125.gc46fb76afa)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pd.DataFrame</span></code></a>]</span></dt><dd><p>the data to use for variable inference.</p>
887+
<dt><strong>data</strong><span class="classifier"><code class="xref py py-obj docutils literal notranslate"><span class="pre">Optional</span></code>[<a class="reference external" href="https://pandas.pydata.org/pandas-docs/dev/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v3.0.0.dev0+1132.ga5e812d86d)"><code class="xref py py-obj docutils literal notranslate"><span class="pre">pd.DataFrame</span></code></a>]</span></dt><dd><p>the data to use for variable inference.</p>
888888
</dd>
889889
</dl>
890890
</dd>

0 commit comments

Comments
 (0)