|
32 | 32 |
|
33 | 33 |
|
34 | 34 | @_aten_lowering_pass
|
35 |
| -def lower_scaled_dot_product_attention( |
| 35 | +def replace_variants_of_sdpa( |
36 | 36 | gm: torch.fx.GraphModule, settings: CompilationSettings
|
37 | 37 | ) -> torch.fx.GraphModule:
|
38 |
| - """Replace specific versions of scaled_dot_product_attention with an equivalent |
39 |
| - implementation which can be easily converted to TRT |
| 38 | + """Replace scaled_dot_product_attention with an equivalent |
| 39 | + implementation which can be accurately converted to TRT |
40 | 40 | """
|
41 |
| - original_fns, replacement = scaled_dot_product_attention_replacement() |
42 |
| - replaced_nodes = [] |
43 |
| - # For each original function, search for it in the graph and replace |
44 |
| - for original in original_fns: |
45 |
| - replaced_nodes += torch.fx.subgraph_rewriter.replace_pattern_with_filters( |
46 |
| - gm, |
47 |
| - original, |
48 |
| - replacement, |
49 |
| - ignore_literals=True, |
50 |
| - ) |
51 |
| - |
52 |
| - if replaced_nodes: |
53 |
| - # Repair instances which use the kwargs field (specifically the "scale" kwarg) |
54 |
| - # Also repair instances which specified the is_causal or attn_bias fields |
55 |
| - for match in replaced_nodes: |
56 |
| - attention_node_replaced = None |
57 |
| - # Seek the attention operator being replaced |
58 |
| - for node in match.nodes_map: |
59 |
| - if node.target in REPLACEABLE_ATEN_OPS: |
60 |
| - attention_node_replaced = match.nodes_map[node] |
61 |
| - break |
62 |
| - |
63 |
| - assert attention_node_replaced is not None |
64 |
| - assert len(match.replacements) == 1 |
65 |
| - |
66 |
| - new_attention_node = match.replacements[0] |
67 |
| - |
68 |
| - assert ( |
69 |
| - new_attention_node.target |
70 |
| - == torch.nn.functional.scaled_dot_product_attention |
71 |
| - ) |
72 |
| - |
73 |
| - # Copy the metadata of the replaced attention node to the new node |
74 |
| - # TODO: Investigate why there are multiple FakeTensors in the metadata. |
75 |
| - # We only use the first one as it contains the output shape information for this node. |
76 |
| - if "val" in attention_node_replaced.meta: |
77 |
| - new_attention_node.meta["val"] = copy.copy( |
78 |
| - attention_node_replaced.meta["val"][0] |
79 |
| - ) |
80 |
| - |
81 |
| - # If the attention operator had keyword-args, copy them to the new node |
82 |
| - if attention_node_replaced.kwargs: |
83 |
| - new_attention_node.kwargs = {**attention_node_replaced.kwargs} |
84 |
| - |
85 |
| - # Set default args in new node: |
86 |
| - # Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False |
87 |
| - new_attention_node.args = new_attention_node.args + (None, 0.0, False) |
88 |
| - |
89 |
| - # The `is_causal` argument was specified |
| 41 | + attn_mask = None |
| 42 | + is_causal = True |
| 43 | + for node in gm.graph.nodes: |
| 44 | + if node.op == "call_function" and node.target in REPLACEABLE_ATEN_OPS: |
90 | 45 | if (
|
91 |
| - ( |
92 |
| - attention_node_replaced.target |
93 |
| - == torch.ops.aten._scaled_dot_product_flash_attention.default |
94 |
| - ) |
95 |
| - and args_bounds_check(attention_node_replaced.args, 4, False) |
96 |
| - ) or ( |
97 |
| - ( |
98 |
| - attention_node_replaced.target |
99 |
| - == torch.ops.aten._scaled_dot_product_efficient_attention.default |
100 |
| - ) |
101 |
| - and args_bounds_check(attention_node_replaced.args, 6, False) |
| 46 | + node.target |
| 47 | + == torch.ops.aten._scaled_dot_product_efficient_attention.default |
| 48 | + ): |
| 49 | + if len(node.args) == 7: |
| 50 | + ( |
| 51 | + query, |
| 52 | + key, |
| 53 | + value, |
| 54 | + attn_bias, |
| 55 | + compute_log_sumexp, |
| 56 | + dropout_p, |
| 57 | + is_causal, |
| 58 | + ) = node.args |
| 59 | + elif len(node.args) == 5: |
| 60 | + query, key, value, attn_mask, is_causal = node.args |
| 61 | + dropout_p = 0.0 |
| 62 | + else: |
| 63 | + raise ValueError( |
| 64 | + f"Unexpected number of arguments for {node.target} in the graph" |
| 65 | + ) |
| 66 | + elif ( |
| 67 | + node.target |
| 68 | + == torch.ops.aten._scaled_dot_product_flash_attention.default |
102 | 69 | ):
|
103 |
| - new_attention_node.args = ( |
104 |
| - new_attention_node.args[:5] + (True,) + new_attention_node.args[6:] |
| 70 | + if len(node.args) == 6: |
| 71 | + query, key, value, dropout_p, is_causal, return_debug_mask = ( |
| 72 | + node.args |
| 73 | + ) |
| 74 | + elif len(node.args) == 3: |
| 75 | + query, key, value = node.args |
| 76 | + dropout_p = 0.0 |
| 77 | + is_causal = True |
| 78 | + else: |
| 79 | + raise ValueError( |
| 80 | + f"Unexpected number of arguments for {node.target} in the graph" |
| 81 | + ) |
| 82 | + if attn_mask is not None: |
| 83 | + logger.warning( |
| 84 | + f"This current version of SDPA converter does not support attn_mask for {node.target} in the graph. Ignoring it and using is_causal=True configuration." |
105 | 85 | )
|
106 | 86 |
|
107 |
| - # The `attn_bias` argument was specified |
108 |
| - if ( |
109 |
| - attention_node_replaced.target |
110 |
| - == torch.ops.aten._scaled_dot_product_efficient_attention.default |
111 |
| - ) and args_bounds_check(attention_node_replaced.args, 3) is not None: |
112 |
| - new_attention_node.args = ( |
113 |
| - new_attention_node.args[:3] |
114 |
| - + attention_node_replaced.args[3] |
115 |
| - + new_attention_node.args[4:] |
116 |
| - ) |
| 87 | + modified_input_args = (query, key, value, None, dropout_p, is_causal) |
117 | 88 |
|
118 |
| - gm = clean_up_graph_after_modifications(gm) |
119 |
| - logger.debug(f"Graph after lowering scaled dot product attention:\n{gm.graph}") |
| 89 | + # Create a new node with torch.nn.functional.scaled_dot_product_attention |
| 90 | + # The input args is (query, key, value, is_causal). kwargs has scale |
| 91 | + with gm.graph.inserting_after(node): |
| 92 | + new_node = gm.graph.call_function( |
| 93 | + torch.nn.functional.scaled_dot_product_attention, |
| 94 | + args=modified_input_args, |
| 95 | + kwargs={"scale": node.kwargs.get("scale", None)}, |
| 96 | + ) |
120 | 97 |
|
| 98 | + # Deep copy encounters RuntimeError: Cannot access data pointer of Tensor (e.g. FakeTensor, FunctionalTensor). So we use copy instead. |
| 99 | + new_node.meta = copy.copy(node.meta) |
| 100 | + # Check if there's a getitem node following this attention node |
| 101 | + for user in list(node.users): |
| 102 | + if user.op == "call_function" and user.target == operator.getitem: |
| 103 | + # If the getitem is extracting the first element (the output tensor) |
| 104 | + if user.args[1] == 0: |
| 105 | + # Replace all uses of the getitem with the new attention node |
| 106 | + user.replace_all_uses_with(new_node) |
| 107 | + new_node.meta["val"] = new_node.meta["val"][0] |
| 108 | + # Replace all uses of the original node with the new node |
| 109 | + node.replace_all_uses_with(new_node) |
| 110 | + |
| 111 | + gm.graph.erase_node(node) |
| 112 | + |
| 113 | + # Clean up the graph |
| 114 | + clean_up_graph_after_modifications(gm) |
| 115 | + |
| 116 | + logger.info( |
| 117 | + "Replaced variants of scaled_dot_product_attention with torch.nn.functional.scaled_dot_product_attention" |
| 118 | + ) |
121 | 119 | return gm
|
122 |
| - |
123 |
| - |
124 |
| -def scaled_dot_product_attention_replacement() -> Tuple[ |
125 |
| - Sequence[Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor]], |
126 |
| - Callable[[torch.Tensor, torch.Tensor, torch.Tensor], torch.Tensor], |
127 |
| -]: |
128 |
| - """Constructs the original and replacement functions for efficient attention""" |
129 |
| - |
130 |
| - # Efficient Attention original graph |
131 |
| - def efficient(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor: |
132 |
| - outputs = torch.ops.aten._scaled_dot_product_efficient_attention.default( |
133 |
| - q, |
134 |
| - k, |
135 |
| - v, |
136 |
| - None, |
137 |
| - False, |
138 |
| - ) |
139 |
| - out = operator.getitem(outputs, 0) |
140 |
| - return out |
141 |
| - |
142 |
| - # Flash Attention original graph |
143 |
| - def flash(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor: |
144 |
| - outputs = torch.ops.aten._scaled_dot_product_flash_attention.default( |
145 |
| - q, |
146 |
| - k, |
147 |
| - v, |
148 |
| - ) |
149 |
| - out = operator.getitem(outputs, 0) |
150 |
| - return out |
151 |
| - |
152 |
| - # Efficient Attention w/Scale original graph |
153 |
| - def efficient_scale( |
154 |
| - q: torch.Tensor, k: torch.Tensor, v: torch.Tensor |
155 |
| - ) -> torch.Tensor: |
156 |
| - outputs = torch.ops.aten._scaled_dot_product_efficient_attention.default( |
157 |
| - q, |
158 |
| - k, |
159 |
| - v, |
160 |
| - None, |
161 |
| - False, |
162 |
| - scale=1.0, |
163 |
| - ) |
164 |
| - out = operator.getitem(outputs, 0) |
165 |
| - return out |
166 |
| - |
167 |
| - # Flash Attention w/Scale original graph |
168 |
| - def flash_scale(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor: |
169 |
| - outputs = torch.ops.aten._scaled_dot_product_flash_attention.default( |
170 |
| - q, |
171 |
| - k, |
172 |
| - v, |
173 |
| - scale=1.0, |
174 |
| - ) |
175 |
| - out = operator.getitem(outputs, 0) |
176 |
| - return out |
177 |
| - |
178 |
| - # Replacement graph consists of the functional version of scaled_dot_product_attention |
179 |
| - def replacement( |
180 |
| - query: torch.Tensor, key: torch.Tensor, value: torch.Tensor |
181 |
| - ) -> torch.Tensor: |
182 |
| - return torch.nn.functional.scaled_dot_product_attention(query, key, value) |
183 |
| - |
184 |
| - return (efficient, flash, efficient_scale, flash_scale), replacement |
0 commit comments