Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cherry-picking changes in main to the release branch #1446

Merged
merged 2 commits into from
Feb 19, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 56 additions & 8 deletions test/stateful_dataloader/test_sampler.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
from torch.utils.data import Dataset

from torchdata.stateful_dataloader import StatefulDataLoader
from torchdata.stateful_dataloader.sampler import StatefulDistributedSampler
from torchdata.stateful_dataloader.sampler import RandomSampler, StatefulDistributedSampler


class MockDataset(Dataset):
Expand All @@ -34,7 +34,10 @@ def __getitem__(self, idx):
"Fails with TSAN with the following error: starting new threads after multi-threaded "
"fork is not supported. Dying (set die_after_fork=0 to override)",
)
@unittest.skipIf(TEST_WITH_ASAN, "DataLoader tests hang in ASAN, see: https://github.com/pytorch/pytorch/issues/66223")
@unittest.skipIf(
TEST_WITH_ASAN,
"DataLoader tests hang in ASAN, see: https://github.com/pytorch/pytorch/issues/66223",
)
class TestDataLoader(TestCase):
def setUp(self):
super().setUp()
Expand All @@ -44,7 +47,12 @@ def setUp(self):
def test_initialization_StatefulDistributedSampler(self):

sampler = StatefulDistributedSampler(
self.dataset, num_replicas=10, rank=0, shuffle=False, seed=42, drop_last=False
self.dataset,
num_replicas=10,
rank=0,
shuffle=False,
seed=42,
drop_last=False,
)
self.assertEqual(sampler.dataset, self.dataset)
self.assertEqual(sampler.num_replicas, 10)
Expand Down Expand Up @@ -139,7 +147,8 @@ def test_drop_last_effect(self):
)

self.assertTrue(
len(indices_with_drop) <= len(indices_without_drop), "Drop last should result in fewer or equal indices"
len(indices_with_drop) <= len(indices_without_drop),
"Drop last should result in fewer or equal indices",
)

def test_data_order_with_shuffle(self):
Expand All @@ -153,7 +162,11 @@ def test_data_order_with_shuffle(self):
for batch in dataloader:
data_loaded.extend(batch)
self.assertEqual(len(data_loaded), len(self.dataset), "All data should be loaded")
self.assertEqual(data_loaded, data_sampled, "Data loaded by DataLoader should match data sampled by sampler")
self.assertEqual(
data_loaded,
data_sampled,
"Data loaded by DataLoader should match data sampled by sampler",
)

def test_data_order_without_shuffle(self):
sampler = StatefulDistributedSampler(self.dataset, num_replicas=1, rank=0, shuffle=False)
Expand All @@ -167,8 +180,16 @@ def test_data_order_without_shuffle(self):
for batch in dataloader:
data_loaded.extend(batch)
self.assertEqual(len(data_loaded), len(self.dataset), "All data should be loaded")
self.assertEqual(data_loaded, data_sampled, "Data loaded by DataLoader should match data sampled by sampler")
self.assertEqual(data_loaded, list(range(100)), "Data loaded by DataLoader should be in original order")
self.assertEqual(
data_loaded,
data_sampled,
"Data loaded by DataLoader should match data sampled by sampler",
)
self.assertEqual(
data_loaded,
list(range(100)),
"Data loaded by DataLoader should be in original order",
)

def test_data_distribution_across_replicas(self):
num_replicas = 5
Expand All @@ -181,9 +202,36 @@ def test_data_distribution_across_replicas(self):
data_loaded.extend([int(x.item()) for x in batch])
all_data.extend(data_loaded)
self.assertEqual(
sorted(all_data), list(range(100)), "All data points should be covered exactly once across all replicas"
sorted(all_data),
list(range(100)),
"All data points should be covered exactly once across all replicas",
)

def test_seed_replicability(self):
# Test that the same seed will result in the same data order
# We first pick a random number as seed, then use it to initialize two dataloaders
min_seed, max_seed = 0, 1000 # [min_seed, max_seed)
seed = torch.randint(min_seed, max_seed, (1,), dtype=torch.int64).item()
torch.manual_seed(seed)

dataloader1 = StatefulDataLoader(self.dataset, batch_size=1, shuffle=True)
results1 = list(dataloader1)

# Repeat the same process with the same seed
torch.manual_seed(seed)
dataloader2 = StatefulDataLoader(self.dataset, batch_size=1, shuffle=True)
results2 = list(dataloader2)

# Repeat the same process with a different seed, making sure that the seed is different
min_seed, max_seed = 1000, 2000 # [min_seed, max_seed)
seed = torch.randint(min_seed, max_seed, (1,), dtype=torch.int64).item()
torch.manual_seed(seed)
dataloader3 = StatefulDataLoader(self.dataset, batch_size=1, shuffle=True)
results3 = list(dataloader3)

self.assertEqual(results1, results2, "Data should be replicable with same seed")
self.assertNotEqual(results1, results3, "Data should not be replicable with different seed")


if __name__ == "__main__":
run_tests()
213 changes: 211 additions & 2 deletions test/stateful_dataloader/test_state_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@

import torch
import torch.utils.data

from parameterized import parameterized
from torch.testing._internal.common_utils import IS_MACOS, TEST_CUDA, TestCase
from torchdata.stateful_dataloader import Stateful, StatefulDataLoader

Expand Down Expand Up @@ -1314,7 +1316,7 @@ def test(self):
dataset=dataset,
num_workers=num_workers,
collate_fn=identity,
multiprocessing_context="forkserver" if IS_MACOS and num_workers else None,
multiprocessing_context=("forkserver" if IS_MACOS and num_workers else None),
)
it = iter(dl)
# Fetch at least one batch from each worker
Expand All @@ -1325,7 +1327,10 @@ def test(self):
if num_workers > 0:
for i in range(num_workers):
# Ensure worker state is stored only once if the dataset is also the iterator
self.assertEqual(state_dict["_snapshot"]["_worker_snapshots"][f"worker_{i}"]["dataset_state"], None)
self.assertEqual(
state_dict["_snapshot"]["_worker_snapshots"][f"worker_{i}"]["dataset_state"],
None,
)
self.assertTrue(
state_dict["_snapshot"]["_worker_snapshots"][f"worker_{i}"]["fetcher_state"][
"dataset_iter_state"
Expand Down Expand Up @@ -1441,6 +1446,210 @@ def test_fast_state_dict_request_skip_steps(self) -> None:
self._run_test(17, 19)


class TestMultiEpochSDL_shard0(TestCase):
def get_map_dl(self, data_size, num_workers, batch_size, shuffle):
dataset = DummyMapDataset(data_size, shuffle=False)
return StatefulDataLoader(
dataset=dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
multiprocessing_context=("forkserver" if IS_MACOS and num_workers else None),
)

def _run(self, data_size, num_workers, batch_size, shuffle):
# For reproducibility of testing, fixing the seed
torch.manual_seed(0)
dataloader1 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
# Run through the dataloader for 2 epochs and count the number of items yielded
num_items_yielded = 0
dataloader1_items = []
for _ in range(2):
for batch in dataloader1:
dataloader1_items.append(batch)
num_items_yielded += 1
# Save the state dict
state_dict = dataloader1.state_dict()
# Create a new StatefulDataLoader instance and load the state dict
new_dataloader1 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
new_dataloader1.load_state_dict(state_dict)
# Run through the new dataloader for another 2 epochs and count the number of items yielded
additional_num_items_yielded = 0
for i in range(2):
epoch_num_items_yielded = 0
for batch in new_dataloader1:
dataloader1_items.append(batch)
epoch_num_items_yielded += 1
additional_num_items_yielded += epoch_num_items_yielded
# Check that the total number of items yielded is correct
self.assertEqual(num_items_yielded + additional_num_items_yielded, data_size * 4)

# now run a second dataloder for 4 epochs and check if the order is same.
# we need to fix the seed again since we want to bring the initial conditions to the same state as at the time of instantiating the first dataloader
torch.manual_seed(0)
dataloader2 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
dataloader2_items = []
for _ in range(4):
for batch in dataloader2:
dataloader2_items.append(batch)

self.assertEqual(dataloader1_items, dataloader2_items)

@parameterized.expand(itertools.product([100], [0, 2], [1], [False, True]))
def test_multi_epoch_sdl(self, datasize, num_workers, batch_size, shuffle):
self._run(datasize, num_workers, batch_size, shuffle)


class TestEndOfEpochBehavior_shard0(TestCase):
def get_map_dl(self, data_size, num_workers, batch_size, shuffle):
dataset = DummyMapDataset(data_size, shuffle=False)
return StatefulDataLoader(
dataset=dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
multiprocessing_context=("forkserver" if IS_MACOS and num_workers else None),
)

def _count_items_yielded(self, data_loader: StatefulDataLoader) -> int:
num_items_yielded = 0
for batch in data_loader:
num_items_yielded += 1
return num_items_yielded

def _run(self, data_size, num_workers, batch_size, shuffle):
dataloader = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
# Run through the dataloader for 1 epoch and count the number of items yielded
num_items_yielded = 0

for batch in dataloader:
num_items_yielded += 1
sd_in = dataloader.state_dict()
sd_out = dataloader.state_dict()

self.assertEqual(num_items_yielded, data_size)

# Create a new StatefulDataLoader instance and load the state dict saved before the end of epoch
dataloader_sd_in = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
dataloader_sd_in.load_state_dict(sd_in)

# Run through the new dataloader for 1 epoch and count the number of items yielded
# num_items_yielded should be 0 since the state dict was saved before the end of epoch
num_items_yielded = self._count_items_yielded(dataloader_sd_in)
self.assertEqual(num_items_yielded, 0)

# Create a new StatefulDataLoader instance and load the state dict saved after the end of epoch
dataloader_sd_out = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
dataloader_sd_out.load_state_dict(sd_out)

# Run through the new dataloader for 1 epoch and count the number of items yielded
# num_items_yielded should be data_size since the state dict was saved after the end of epoch
num_items_yielded = self._count_items_yielded(dataloader_sd_out)
self.assertEqual(num_items_yielded, data_size)

@parameterized.expand(itertools.product([100], [0, 2], [1], [False, True]))
def test_end_of_epoch_behavior(self, datasize, num_workers, batch_size, shuffle):
self._run(datasize, num_workers, batch_size, shuffle)


class TestNotStatefulSamplerSDL_shard0(TestCase):
def get_map_dl(self, data_size, num_workers, batch_size, sampler_cls):
dataset = DummyMapDataset(data_size, shuffle=False)
sampler = sampler_cls(dataset)
return StatefulDataLoader(
dataset=dataset,
num_workers=num_workers,
batch_size=batch_size,
sampler=sampler,
multiprocessing_context=("forkserver" if IS_MACOS and num_workers else None),
)

def _run(self, data_size, num_workers, batch_size, interrupt, sampler_cls):
torch.manual_seed(0) # Fixing seed for deterministic results
dataloader1 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
sampler_cls=sampler_cls,
)
# interrupt the dataloader after interrupt batches and save the state dict
results_dataloader1 = []
for i, batch in enumerate(dataloader1):
results_dataloader1.append(batch)
if i == interrupt:
break
state_dict = dataloader1.state_dict()

torch.manual_seed(
0
) # We need to fix seed again so that before fast forwarding we are at the same state of gen as before
resumed_dataloader1 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
sampler_cls=sampler_cls,
)
resumed_dataloader1.load_state_dict(state_dict)

for batch in resumed_dataloader1:
results_dataloader1.append(batch)

# now start a completely new dataloader and get all the batches
torch.manual_seed(0)
dataloader2 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
sampler_cls=sampler_cls,
)
results_dataloader2 = []
for batch in dataloader2:
results_dataloader2.append(batch)
self.assertEqual(results_dataloader1, results_dataloader2)

@parameterized.expand(
itertools.product(
[100],
[0, 2],
[1],
[10, 50, 80],
[torch.utils.data.RandomSampler, torch.utils.data.SequentialSampler],
)
)
def test_notstatefulSDL(self, data_size, num_workers, batch_size, interrupt, sampler_cls):
self._run(100, 0, 1, interrupt, sampler_cls)


class TestMultiEpochState_shard0(TestCase):
def get_iterable_dl(self, pw, num_workers):
data_size = [25, 50, 100, 75]
Expand Down
Loading
Loading