-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedian_normalization.py
49 lines (39 loc) · 1.22 KB
/
median_normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import pandas as pd
import numpy as np
batchone=pd.read_csv("positivelog_batchone_dupl.csv",header=None)
batchtwo=pd.read_csv('positivelog_batchtwo_dupl.csv',header=None)
#Dropping column id
batchone = batchone.drop(columns=0)
batchtwo = batchtwo.drop(columns=0)
#sanity check
#print(np.shape(batchone))
batchone_median=batchone.median()
batchtwo_median=batchtwo.median()
#print(batchone_median)
#print(batchtwo_median)
batch_normalized=batchone_median-batchtwo_median
#sanity check
#print(batch_normalized)
#print(batchone)
data=pd.read_csv('positive_log_batchtwo.csv')
dataone=pd.read_csv('positive_log_batchone.csv')
dataone = dataone.transpose()
#Make first row, column names
dataone.columns = dataone.iloc[0].apply(str)
dataone = dataone.drop(dataone.index[0:4])
dataone = dataone.transpose()
data = data.transpose()
#Make first row, column names
data.columns = data.iloc[0].apply(str)
data = data.drop(data.index[0:4])
data = data.transpose()
#print(data)
#print(batchtwo)
#print(batch_normalized)
batch_normalized=np.asarray(batch_normalized)
#print(batchone)
#print(data-batch_normalized)
batchtwo_corrected=dataone - batch_normalized
print(batchtwo_corrected)
print(data)
batchtwo_corrected.to_csv('batchtwocorrected_log.csv')