|
| 1 | +/* |
| 2 | +Load and run a saved TensorFlow's multiple-input model |
| 3 | +
|
| 4 | +g++ -Wall -fPIC -D_GLIBCXX_USE_CXX11_ABI=1 run_model.cpp -o run_model.o \ |
| 5 | + -I/usr/local/tensorflow-2.11/include/ -L/usr/local/tensorflow-2.11/lib \ |
| 6 | + -ltensorflow_cc -ltensorflow_framework |
| 7 | +
|
| 8 | +Rangsiman Ketkaew |
| 9 | +*/ |
| 10 | + |
| 11 | +#include <tensorflow/cc/saved_model/loader.h> |
| 12 | +#include <tensorflow/cc/saved_model/tag_constants.h> |
| 13 | + |
| 14 | +using namespace tensorflow; |
| 15 | + |
| 16 | +int main() |
| 17 | +{ |
| 18 | + |
| 19 | + // load the whole folder |
| 20 | + std::string export_dir = "./model/"; |
| 21 | + |
| 22 | + // Load |
| 23 | + SavedModelBundle model_bundle; |
| 24 | + SessionOptions session_options = SessionOptions(); |
| 25 | + RunOptions run_options = RunOptions(); |
| 26 | + Status status = LoadSavedModel(session_options, run_options, export_dir, {kSavedModelTagServe}, &model_bundle); |
| 27 | + |
| 28 | + if (!status.ok()) |
| 29 | + { |
| 30 | + std::cerr << "Failed: " << status; |
| 31 | + } |
| 32 | + |
| 33 | + auto sig_map = model_bundle.GetSignatures(); |
| 34 | + auto model_def = sig_map.at("serving_default"); |
| 35 | + |
| 36 | + for (auto const &p : sig_map) |
| 37 | + { |
| 38 | + std::cout << "key: " << p.first.c_str() << std::endl; |
| 39 | + } |
| 40 | + for (auto const &p : model_def.inputs()) |
| 41 | + { |
| 42 | + std::cout << "key: " << p.first.c_str() << " " << p.second.name().c_str() << std::endl; |
| 43 | + } |
| 44 | + for (auto const &p : model_def.outputs()) |
| 45 | + { |
| 46 | + std::cout << "key: " << p.first.c_str() << " " << p.second.name().c_str() << std::endl; |
| 47 | + } |
| 48 | + |
| 49 | + auto input_tensor_1_name = "serving_default_args_0:0"; |
| 50 | + auto input_tensor_2_name = "serving_default_args_0_1:0"; |
| 51 | + auto output_tensor_1_name = "StatefulPartitionedCall:0"; |
| 52 | + auto output_tensor_2_name = "StatefulPartitionedCall:1"; |
| 53 | + |
| 54 | + // Create output placeholder tensors |
| 55 | + // I use the size of input that exactly matchs the size of input from Python model |
| 56 | + // Use saved_model_cli to check |
| 57 | + tensorflow::Tensor input_1(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, 394})); |
| 58 | + tensorflow::Tensor input_2(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, 99})); |
| 59 | + |
| 60 | + auto input_mat_1 = input_1.matrix<float>(); |
| 61 | + // assign random value |
| 62 | + for (unsigned i = 0; i < 394; ++i) |
| 63 | + input_mat_1(0, i) = 1.0; |
| 64 | + auto input_mat_2 = input_2.matrix<float>(); |
| 65 | + // assign random value |
| 66 | + for (unsigned i = 0; i < 99; ++i) |
| 67 | + input_mat_2(0, i) = 2.0; |
| 68 | + |
| 69 | + typedef std::vector<std::pair<std::string, tensorflow::Tensor>> tensor_dict; |
| 70 | + tensor_dict feed_dict = { |
| 71 | + {input_tensor_1_name, input_1}, |
| 72 | + {input_tensor_2_name, input_2}}; |
| 73 | + |
| 74 | + // Create output placeholder tensors for results |
| 75 | + std::vector<tensorflow::Tensor> outputs; |
| 76 | + std::vector<std::string> output_names = {output_tensor_1_name, output_tensor_2_name}; |
| 77 | + // Running inference |
| 78 | + tensorflow::Status status_run = model_bundle.session->Run(feed_dict, |
| 79 | + output_names, |
| 80 | + {}, |
| 81 | + &outputs); |
| 82 | + // Check if session is successfully loaded |
| 83 | + if (!status_run.ok()) |
| 84 | + { |
| 85 | + std::cerr << "Failed: " << status_run; |
| 86 | + } |
| 87 | + else |
| 88 | + { |
| 89 | + std::cout << "Passed: " << status_run << std::endl; |
| 90 | + } |
| 91 | + |
| 92 | + std::cout << "input 1 " << input_1.DebugString() << std::endl; |
| 93 | + std::cout << "input 2 " << input_2.DebugString() << std::endl; |
| 94 | + std::cout << "output " << outputs[0].DebugString() << std::endl; |
| 95 | + std::cout << "dense/kernel:0 " << outputs[1].DebugString() << std::endl; |
| 96 | + // std::cout << "dense/bias:0 " << outputs[2].DebugString() << std::endl; |
| 97 | + |
| 98 | + return 0; |
| 99 | +} |
0 commit comments